Synthesis of a three-component aluminum-based alloy by selective laser melting

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 24 No. 4 2022 nesium powder are distributed throughout the powder. SLM method was used to produce samples from the powder composition under both constant and pulsed modes. Under the constant mode the parameters were as follows: P = 80 W, V = 100 mm/s, V = 200 mm/s, V = 300 mm/s, V = 400 mm/s, s = 90 µm, h = = 25 µm. The parameters of the pulsed mode were as follows: P = 100 W, m = 5,000 Hz, V = 100 mm/s, V = = 200 mm/s, V = 300 mm/s, V = 400 mm/s, s = 90 µm, h = 25 µm. The results of the searching experiments show that the sample produced under the constant power and V = 300mm/s has the highest strength and does not break off when being grinded. The described study shows the possibility of synthesizing products from the powder composition of aluminum, silicon and magnesium by selective laser melting, but to produce samples with improved mechanical properties additional searching experiments are required with varying speed, diameter of the laser beam, changing the scanning strategy. This paper presents the technology of mechanical mixing of powders as a methodology of producing homogenous raw material for SLM. Research on mixing elemental powders is of growing interest in the additive technology community to produce new materials. The promising new aluminum alloy (Al – 91 wt. %, Si – 8 wt. %, Mg – 1 wt. %) is developed for selective laser melting. The material allows forming highly dispersed structure with low porosity. References 1. Khajavi S.H., Partanen J., Hölmstrom J. Additive manufacturing in the spare parts supply chain. Computers in Industry, 2014, vol. 65, pp. 50–63. 2. Alghamdi F., Song X., Hadadzadeh A., Shalchi-Amirkhiz B., Mohammadi M., Haghshenas M. Post heat treatment of additive manufactured AlSi10Mg: on silicon morphology, texture and small-scale properties. Materials Science and Engineering A, 2020, vol. 783, p. 139296. 3. Yadollahi A., Shamsaei N. Additive manufacturing of fatigue resistant materials: challenges and opportunities. International Journal of Fatigue, 2017, vol. 98, pp. 14–31. 4. KhimichM.A., ProsolovK.A.,MishurovaT., EvsevleevS.,MonforteX.,TeuschlA.H., SlezakP., IbragimovE.A., Saprykin A.A., Kovalevskaya Z.G., Dmitriev A.I., Bruno G., Sharkeev Y.P. Advances in laser additive manufacturing of Ti-Nb alloys: from nanostructured powders to bulk objects. Nanomaterials, 2021, vol. 11 (5), p. 1159. 5. Debroy T., Wei H.L., Zuback J.S., Mukherjee T., Elmer J.W., Milewski J.O., Beese A.M., Wilson-Heid A., De A., Zhang W. Additive manufacturing of metallic components – process, structure and properties. Progress in Materials Science, 2018, vol. 92, pp. 112–224. 6. Aboulkhair N.T., Simonelli M., Parry L., Ashcroft I., Tuck C., Hague R. 3D printing of aluminum alloys: additive manufacturing of aluminum alloys using selective laser melting. Progress in Materials Science, 2019, vol. 106, p. 100578. 7. Uzan N.E., Shneck R., Yeheskel O., Frage N. Fatigue of AlSi10Mg specimens fabricated by additive manufacturing selective laser melting (AM-SLM). Materials Science and Engineering A, 2017, vol. 704, pp. 229–237. 8. Aboulkhair N.T., Everitt N.M., Ashcroft I., Tuck C. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Additive Manufacturing, 2014, vol. 1–4, pp. 77–86. 9. Ma K., Wen H., Hu T., Topping T.D., Isheim D., Seidman D.N., Lavernia E.J., Schoenung J.M. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Materialia, 2014, vol. 62, pp. 141–155. 10. King W.E., Anderson A.T., Ferencz R.M., Hodge N.E., Kamath C., Khairallah S.A. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Applied Physics Reviews, 2015, vol. 2 (4), p. 41304. DOI: 10.1063/1.4937809. 11. Saprykina N.A., Saprykin A.A., Arkhipova D.A. Influence of shielding gas and mechanical activation of metal powders on the quality of surface sintered layers. IOP Conference Series: Materials Science and Engineering, 2016, vol. 125 (1), p. 012016. 12. Awd M., Tenkamp J., Hirtler M., Siddique S., Bambach M., Walther F. Comparison of microstructure and mechanical properties of Scalmalloy® produced by selective laser melting and laser metal deposition. Materials, 2017, vol. 11, pp. 1–17. 13. Buchbinder D., Schleifenbaum H., Heidrich S., Meiners W., Bültmann J. High power selective laser melting (HPSLM) of aluminum parts. Physics Procedia, 2011, vol. 12, pp. 271–278.

RkJQdWJsaXNoZXIy MTk0ODM1