Residual stress estimation in crystalline phases of high-entropy alloys of the AlxCoCrFeNi system

OBRABOTKAMETALLOV Vol. 24 No. 4 2022 191 MATERIAL SCIENCE 3. Gorban’ V.F., Krapivka N.A., Firstov S.A. Vysokoentropiinye splavy – elektronnaya kontsentratsiya – fazovyi sostav – parametr reshetki – svoistva [High-entropy alloys: interrelations between electron concentration, phase composition, lattice parameter, and properties]. Fizika metallov i metallovedenie = Physics of Metals and Metallography, 2017, vol. 118 (10), pp. 1017–1029. DOI: 10.7868/S0015323017080058. (In Russian). 4. RogachevA.S. Struktura, stabil’nost’ i svoistva vysokoentropiinykh splavov [Structure, stability and properties of high-entropy alloys]. Fizika metallov i metallovedenie = Physics of Metals and Metallography, 2020, vol. 121 (8), pp. 807–841. DOI: 10.31857/S0015323020080094. (In Russian). 5. George E.P., Raabe D., Ritchie R.O. High-entropy alloys. Nature Reviews Materials, 2019, vol. 4, pp. 515– 534. DOI: 10.1038/s41578-019-0121-4. 6. Sharma P., Dwivedi V.K., Dwivedi S.P. Development of high entropy alloys: a review. Materials Today: Proceedings, 2021, vol. 43, pp. 502–509. DOI: 10.1016/j.matpr.2020.12.023. 7. ChoiW.M., JoY.H., Sohn S.S., Lee S., Lee B.J. Understanding the physical metallurgy of the CoCrFeMnNi highentropy alloy: an atomistic simulation study. Npj Computational Materials, 2018, vol. 4 (1), pp. 1–9. DOI: 10.1038/ s41524-017-0060-9. 8. Lee C., Maresca F., Feng R., Chou Y., Ungar T., Widom M., An K., Poplawsky J.D., Chou Y.C., Liaw P.K., CurtinW.A. Strength can be controlled by edge dislocations in refractory high-entropy alloys. Nature Communications, 2021, vol. 12 (1). DOI: 10.1038/s41467-021-25807-w. 9. Ikeda Y., Grabowski B., Kӧrmann F. Ab initio phase stabilities and mechanical properties of multicomponent alloys: a comprehensive review for high entropy alloys and compositionally complex alloys. Materials Characterization, 2019, vol. 147, pp. 464–511. DOI: 10.1016/j.matchar.2018.06.019. 10. Huang T., Jiang H., Lu Y., Wang T., Li T. Effect of Sc and Y addition on the microstructure and properties of HCP-structured high-entropy alloys. Applied Physics A: Materials Science and Processing, 2019, vol. 125 (3), pp. 1–5. DOI: 10.1007/s00339-019-2484-1. 11. Santodonato L.J., Liaw P.K., Unocic R.R., Bei H., Morris J.R. Predictive multiphase evolution inAl-containing high-entropy alloys. Nature Communications, 2018, vol. 9 (1), pp. 1–10. DOI: 10.1038/s41467-018-06757-2. 12. Wang W.R., Wang W.L., Yeh J.W. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. Journal of Alloys and Compounds, 2014, vol. 589, pp. 143–152. DOI: 10.1016/j.jallcom.2013.11.084. 13. Memon B.A., Yao H. High-pressure induced phase transitions in high-entropy alloys: a review. Entropy, 2019, vol. 21 (3). DOI: 10.3390/e21030239. 14. Dong W., Zhou Z., Zhang M., Ma Y., Yu P., Liaw P.K., Li G. Applications of high-pressure technology for high-entropy alloys: a review. Metals, 2019, vol. 9 (8), pp. 2–16. DOI: 10.3390/met9080867. 15. Zhou P.F., Xiao D.H., Wu Z., Song M. Microstructure and mechanical properties of AlCoCrFeNi high entropy alloys produced by spark plasma sintering. Materials Research Express, 2019, vol. 6 (8). DOI: 10.1088/2053-1591/ ab2517. 16. Ivanov I.V., Emurlaev K.I., Ruktuev A.A., Tyurin A.G., Bataev I.A. Struktura vysokoentropiinogo splava AlCoCrFeNi posle deformatsii po skheme odnoosnogo szhatiya i termicheskoi obrabotki [Structure of AlCoCrFeNi high-entropy alloy after uniaxial compression and heat treatment]. Izvestiya vysshikh uchebnykh zavedenii. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy, 2021, vol. 64 (10), pp. 736–746. DOI: 10.17073/0368-0797-2021-10736-746. 17. Feuerbacher M. Dislocations and deformation microstructure in a B2 ordered Al28Co20Cr11Fe15Ni26 highentropy alloy. Scientifi c Reports, 2016, vol. 6 (1), pp. 1–9. DOI: 10.1038/srep29700. 18. MaY., Jiang B., Li C., Wang Q., Dong C., Liaw P.K., Xu F., Sun L. The BCC/B2 morphologies inAlxNiCoFeCr high-entropy alloys. Metals, 2017, vol. 7 (2). DOI: 10.3390/met7020057. 19. Zhu Z., Yang T., Shi R., Quan X., Zhang J., Qiu R., Song B., Liu Q. The effects of annealing at different temperatures on microstructure and mechanical properties of cold-rolled Al0.3CoCrFeNi high-entropy alloy. Metals, 2021, vol. 11 (6). DOI: 10.3390/met11060940. 20. Rusakov A.A. Rentgenografi ya metallov [Radiography of metals]. Moscow, Atomizdat Publ., 1977. 479 p. 21. Ivanov I.V., Lazurenko D.V., StarkA., Pyczak F., ThömmesA., Bataev I.A. Application of different diffraction peak profi le analysis methods to study the structure evolution of cold-rolled hexagonal α-titanium. Metals and Materials International, 2020, vol. 26 (1), pp. 83–93. DOI: 10.1007/s12540-019-00309-z. Confl icts of Interest The authors declare no confl ict of interest.  2022 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

RkJQdWJsaXNoZXIy MTk0ODM1