Features of the structure formation of sintered powder materials using waste metal processing of steel workpieces

OBRABOTKAMETALLOV Vol. 24 No. 4 2022 204 MATERIAL SCIENCE 3. D’yakonov O.M. Poluchenie metallurgicheskikh briketov na osnove struzhko-poroshkovykh kompozitsii goryachim pressovaniem [Production of metallurgical briquettes on the basis of chips-powder compositions by hot press molding]. Lit’e i metallurgiya = Foundry Production and Metallurgy, 2011, no. 4 (63), pp. 129–137. 4. Rovin S.L., Rovin L.E., Zayac T.M., Valickaya O.M. Pererabotka struzhki chernykh metallov [Processing of ferrous metal shavings]. Lit’e i metallurgiya = Foundry Production and Metallurgy, 2017, no. 4 (89), pp. 94–101. 5. Rovin S.L., Kalinichenko A.S., Rovin L.E. Vozvrashchenie dispersnykh metallootkhodov v proizvodstvo [The return of the dispersed metal waste into production]. Lit’e i metallurgiya = Foundry Production and Metallurgy, 2019, no. 1, pp. 45–48. 6. Rovin S.L., Valitskaya O.M. Teplovaya obrabotka chugunnoi struzhki [Heat treatment of cast iron shavings]. Lit’e i metallurgiya = Foundry Production and Metallurgy, 2007, no. 3, pp. 86–89. 7. Loginov Yu.N., Zagirov N.N., Ivanov E.V. Otsenka urovnya uprochneniya struzhki iz alyuminievogo splava, prednaznachennoi dlya posleduyushchei obrabotki davleniem [Evaluation of the level of hardening of aluminum alloy chips intended for subsequent pressure treatment]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2021, vol. 23, no. 1, pp. 45–55. DOI: 10.17212/1994-6309-2021-23.1-45-55. 8. Kukui D.M., Emel’yanovich I.V., Petrovskii V.P., Rovin L.E., Rovin S.L. Opyt utilizatsii metallicheskoi struzhki [Experience of utilization of metal chipping]. Lit’e i metallurgiya = Foundry Production and Metallurgy, 2009, no. 1, pp. 47–50. 9. Yatsenko I.V., Samboruk A.R., Kuznets E.A. Poluchenie kompozita TiS + Al2O3 + AlFe iz granulirovannoi shikhty metodom SVS [Production of TiC + Al2O3 + AlFe composite from granulated batch by using SHS]. Sovremennye materialy, tekhnika i tekhnologii = Modern Materials, Equipment and Technologies, 2016, no. 3 (6), pp. 149–153. 10. Musa C., Licheri R., Locci A.M., Orru R., Cao G., Rodriguez M.A., Jaworska L. Energy effi ciency during conventional and novel sintering processes: the case of Ti–Al2O3–TiC composites. Journal of Cleaner Production, 2009, vol. 17, pp. 877–882. 11. Okovity V.A., Panteleenko F.I., Talako T.L., Panteleenko A.F. Tekhnologiya polucheniya kompozitsionnogo materiala na osnove mnogofunktsional’noi oksidnoi keramiki [The technology of producing a composite material based on a multifunctional oxide ceramics]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2015, no. 2 (67), pp. 39–45. DOI: 10.17212/1994-6309-2015-2-39-45. 12. Moses O.A., Edmond C.T., Precious T.T., Sipho L.S., Ranti O.S., Apata O.P. Dispersion characteristics, microstructural evolution and sintering behaviour ofAl2O3–Ti6Al4V composites fabricated by spark plasma sintering. Materials Today: Proceedings, 2019, vol. 18, pt. 7, pp. 3791–3797. DOI: 10.1016/j.matpr.2019.07.317. 13. Oke S.R., Falodun O.E., Motsa B.G., Ige O.O., Olubambi P.A. Spark plasma sintering of Al-Ti-Al2O3 composite. Materials Today: Proceedings, 2019, vol. 18, pt. 7, pp. 3946–3951. DOI: 10.1016/j.matpr.2019.07.335. 14. Matsugi K., Kuramoto H., Hatayama T., Yanagisawa O. Temperature distribution at steady state under constant current discharge in spark sintering process of Ti and Al2O3 powders. Journal of Materials Processing Technology, 2004, vol. 146, pp. 274–281. DOI: 10.1016/S0924-0136(02)01039-7. 15. Pugacheva N.B., Nikolin Yu.V., Bykova T.M., Senaeva E.I. Vliyanie khimicheskogo sostava matritsy na strukturu i svoistva monolitnykh SVS-kompozitov [Infl uence of the chemical composition of the matrix on the structure and properties of monolithic SHS composites]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2021, vol. 23, no. 3, pp. 124–138. DOI: 10.17212/1994-63092021-23.3-124-138. 16. Sharifi tabar M., Khaki J.V., Sabzevar M.H. Fabrication of Fe–TiC–Al2O3 composites on the surface of steel using a TiO2–Al–C–Fe combustion reaction induced by gas tungsten arc cladding. International Journal of Minerals, Metallurgy and Materials, 2016, vol. 23, no. 2, pp. 193–204. 17. Bayraktar E., Katundi D. Development of a new aluminium matrix composite reinforced with iron oxide (Fe3O4). Journal of Achievements in Materials and Manufacturing Engineering, 2010, vol. 38, no. 1, pp. 7–14. 18. Dadbakhsh S., Hao L. In situ formation of particle reinforced Al matrix composite by selective laser melting of Al/Fe2O3 powder mixture. Advanced Engineering Materials, 2012, vol. 14, no. 1–2, pp. 45–48. DOI: 10.1002/ adem.201100151. 19. Bataev I.A., Lazurenko D.V., Golkovski M.G., Laptev I.S., Chakin I.K., Ivanchik I.S. Poverkhnostnoe legirovanie titana alyuminiem s ispol’zovaniem metoda vnevakuumnoi elektronno-luchevoi naplavki poroshkovykh smesei [Surface alloying of titanium with aluminium by non-vacuum electron beam cladding of powder mixtures]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2017, no. 1 (74), pp. 51–60.

RkJQdWJsaXNoZXIy MTk0ODM1