Effect of deformation processing on microstructure and mechanical properties of Ti-42Nb-7Zr alloy

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 24 No. 4 2022 References 1. Niinomi M. Recent metallic materials for biomedical applications. Metallurgical and Materials Transactions A, 2002, vol. 33, pp. 477–486. DOI: 10.1007/s11661-002-0109-2. 2. Liang S.X., Feng X.J., Yin L.X., Liu X.Y., Ma M.Z., Liu R.P. Development of a new β Ti alloy with low modulus and favorable plasticity for implant material. Materials Science and Engineering: C, 2016, vol. 61, pp. 338–343. DOI: 10.1016/j.msec.2015.12.076. 3. Nune K.C., Misra R.D., Li S.J., Hao Y.L., Yang R. Osteoblast cellular activity on low elastic modulus Ti24Nb-4Zr-8Sn alloy. Dental Materials, 2017, vol. 33, pp. 152–165. DOI: 10.1016/j.dental.2016.11.005. 4. Cheng J., Li J., Yu S., Du Z., Zhang X., Zhang W., Gai J., Wang H., Song H., Yu Z. Cold rolling deformation characteristic of a biomedical beta type ti–25nb–3zr–2sn–3mo alloy plate and its influence on α precipitated phases and room temperature mechanical properties during aging treatment. Frontiers in Bioengineering and Biotechnology, 2020, vol. 8, p. 598529. DOI: 10.3389/fbioe.2020.598529. 5. Li T., Kent D., Sha G., Dargusch M.S., Cairney J.M. Precipitation of the α-phase in an ultrafine grained betatitanium alloy processed by severe plastic deformation. Materials Science and Engineering: A, 2014, vol. 605, pp. 144–150. DOI: 10.1016/j.msea.2014.03.044. 6. Prokoshkin S., Bralovski V., Dubinskiy S., Zhukova Y., Sheremetyev V., Konopatsky A., Inaekyan K. Manufacturing, structure control, and functional testing of Ti–Nb-based SMA for medical application. Shape Memory and Superelasticity, 2016, vol. 3, pp. 130–144. DOI: 10.1007/s40830-016-0059-y. 7. Sun F., Hao Y.L, Nowak S., Gloriant T., Laheurte P., Prima F. A thermo-mechanical treatment to improve the superelastic performances of biomedical Ti–26Nb and Ti–20Nb–6Zr (at.%) alloys. Journal of the Mechanical Behavior of Biomedical Materials, 2011, vol. 4, pp. 1864–1872. DOI: 10.1016/j.jmbbm.2011.06.003. 8. Dimic I., Cvijovic-Alagic I., Volker B., Hohenwarter A., Pipan R., Veljovic D., Rakin M., Bugarski B. Microstructure and metallic ion release of pure titanium and Ti–13Nb–13Zr alloy processed by high pressure torsion. Materials and Design, 2016, vol. 91 (5), pp. 340–347. DOI: 10.1016/j.matdes.2015.11.088. 9. Chneider S.G., Nunes C.A., Rogero S.O., Higa O.Z., Bressiani J.C. Mechanical properties and cytotoxic evaluation of the Ti-3Nb-13Zr alloy. Biomecánica, 2000, vol. 8 (1), pp. 84–87. DOI: 10.5821/sibb.v8i1.1653. 10. Ozan S., Lin J., Li Yu., Munir K., Jiang H., Wen C. Deformation mechanism and mechanical properties of a thermomechanically processed β Ti–28Nb–35.4Zr alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2018, vol. 78, pp. 224–234. DOI: 10.1016/j.jmbbm.2017.11.025. 11. Ozan S., Lin J., Zhang Y., Li Yu., Wen C. Cold rolling deformation and annealing behavior of a β-type Ti–34Nb–25Zr titanium alloy for biomedical applications. Journal of Materials Research and Technology, 2020, vol. 9 (2), pp. 2308–2318. DOI: 10.1016/j.jmrt.2019.12.062. 12. Ivanov I.V., Thoemmes A., Skiba V.Yu., Ruktuev A.A., Bataev I.A. Effect of electron beam power density on the structure of titanium under non-vacuum electron-beam treatment. Metal Science and Heat Treatment, 2019, vol. 60, pp. 625–632. DOI: 10.1007/s11041-019-00329-x. 13. Sharkeev Yu.P., Eroshenko A.Yu., Glukhov I.A., Tolmachev A.I., Zhu Q. Microstructure and mechanical properties of Ti40Nb alloy after severe plastic deformation. AIP Conference Proceedings, 2014, vol. 1623, pp. 567–570. DOI: 10.1063/1.4899008. 14. ASTM E1382-97. Standard test methods for determining average grain size using semiautomatic and automatic image analysis. West Conshohocken, PA, ASTM International, 2016. 24 p. 15. Collings E.W. Physical metallurgy of titanium alloys. Metals Park, OH, American Society for Metals, 1984. 261 p. ISBN 9780871701817. 16. Inamura T., Kim J.I., Kim H.Y., Hosoda H., Wakashima K., Miyazaki S. Composition dependent crystallography of α″-martensite in Ti–Nb-based β-titanium alloy. Philosophical Magazine, 2007, vol. 87, iss. 23, pp. 3325–3350. DOI: 10.1080/14786430601003874. 17. Glezer A.M., Kozlov E.V., Koneva N.A., Popova N.A., Kurzina I.A. Plastic deformation of nanostructured materials. Boca Raton, CRC Press, 2017. 334 p. ISBN 9780367573201. 18. Bonisch M., Panigrahi A., Calin M., Waitz T., Zehetbauer M., Skrotzki W., Eckert J. Thermal stability and latent heat of Nb–rich martensitic Ti-Nb alloys. Journal of Alloys and Compounds, 2017, vol. 697, pp. 300–309. DOI: 10.1016/j.jallcom.2016.12.108.

RkJQdWJsaXNoZXIy MTk0ODM1