The study of characteristics of the structure of metallic alloys using synchrotron radiation computed laminography (Research Review)

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 24 No. 4 2022 b Fig. 19. Models of flaking mechanism from extended inclusion [39]: a – sample with short vertical inclusions (low concentration of S); b – sample with horizontal inclusions а Conclusion An analysis of the experiments based on using synchrotron radiation sources indicates the effectiveness of the methods of synchrotron computed tomography (SRCT) and synchrotron computed laminography (SRCL) when conducting research in the field of modern materials science. The SRCL method provides the possibility of monitoring the structure of materials when implementing various loading schemes including the study of fatigue and contact fatigue fracture processes. Implementation of the SRCT and SRCL methods is reasonable at the Siberian Ring Photon Source, which is under construction in Novosibirsk. The planned parameters of this source will make it possible to obtain images of the structure of structural and functional materials with high spatial resolution. References 1. Ternov I.M., Mikhailin V.V. Sinkhrotronnoe izluchenie: teoriya i eksperiment [Synchrotron radiation. Theory and Experiment]. Moscow, Energoatomizdat Publ., 1986. 296 p. 2. Helfen L., Myagotin A., Mikulík P., Pernot P., Voropaev A., Elyyan M., Di Michiel M., Baruchel J., Baumbach T. On the implementation of computed laminography using synchrotron radiation. Review of Scientific Instruments, 2011, vol. 82, p. 063702. DOI: 10.1063/1.3596566. 3. Xu F., Helfen L., Baumbach T., Suhonen H. Comparison of image quality in computed laminography and tomography. Optics Express, 2012, vol. 20, pp. 794–806. DOI: 10.1364/OE.20.000794. 4. Ziedses des Plantes B.G. Eine neue methode zur differenzierung in der rontgenographie (planigraphies). Acta Radiologica, 1932, vol. 13, pp. 182–192. DOI: 10.3109/00016923209135135. 5. Hounsfield G.M. A method and apparatus for the examination of a body by radiation such as X or gamma radiation. Patent Specifications, 1283915. London, Patent office, 1972. 6. Zhou J., Maisl M., Reiter H., Arnold W. Computed laminography for materials testing. Applied Physics Letters, 1996, vol. 68, p. 3500. DOI: 10.1063/1.115771. 7. Marusina M.Ya., Kaznacheeva A.O. Sovremennye vidy tomografii [Modern tomography types]. St. Petersburg, ITMO University, 2006. 132 p. 8. Hounsfield G.M. Computed medical imaging. Nobel lecture, December 8, 1979. Journal of Computer Assisted Tomography, 1980, vol. 4, pp. 665–674. DOI: 10.1097/00004728-198010000-00017. 9. Helfen L., Baumbach T., Mikulík P., Kiel D., Pernot P., Cloetens P., Baruchel J. High-resolution three-dimensional imaging of flat objects by synchrotron-radiation computed laminography. Applied Physics Letters, 2005, vol. 86, p. 071915. DOI: 10.1063/1.1854735. 10. Grant D.G. Tomosynthesis: a three-dimensional radiographic imaging technique. IEEE Transactions on Biomedical Engineering, 1972, vol. BME-19, pp. 20–28. DOI: 10.1109/TBME.1972.324154. 11. Lauritsch G., Härer W.H. Theoretical framework for filtered back projection in tomosynthesis. Proceedings of SPIE, 1998, vol. 3338, pp. 1127–1137. DOI: 10.1117/12.310839.

RkJQdWJsaXNoZXIy MTk0ODM1