Analysis of the reasons for the formation of defects in the 12-Cr18-Ni10-Ti steel billets and development of recommendations for its elimination

OBRABOTKAMETALLOV Vol. 25 No. 1 2023 14 TECHNOLOGY 4. Ayer R., Ro Y., Park I., Shim J., Nam J., Kim J. A computational approach to evaluate the sensitization propensities of UNS S32100 and UNS S34700 stainless steels. Corrosion 2018, Phoenix, Arizona, USA, 2018, p. NACE-2018-10574. Available at: https://onepetro.org/NACECORR/proceedings-abstract/CORR18/AllCORR18/NACE-2018-10574/125882 (accessed 26.01.2023). 5. Tynchenko V., Bukhtoyarov V., Rogova D., Myrugin A., Seregin Y., Bocharov A. Software for modeling brazing process of spacecraft elements from widely used alloys. 2022 21st International Symposium INFOTEH-Jahorina (INFOTEH), East Sarajevo, Bosnia and Herzegovina, 2022, pp. 1–5, DOI: 10.1109/INFOTEH53737.2022.9751246. 6. Morshed-Behbahani K., Najafi sayar P., Pakshir M., Shahsavari M. An electrochemical study on the effect of stabilization and sensitization heat treatments on the intergranular corrosion behaviour of AISI 321H austenitic stainless steel. Corrosion Science, 2018, vol. 138, pp. 28–41. 7. Feng Z., Zecevic M., Knezevic M. Stress-assisted (γ→ α′) and strain-induced (γ→ ε→ α′) phase transformation kinetics laws implemented in a crystal plasticity model for predicting strain path sensitive deformation of austenitic steels. International Journal of Plasticity, 2021, vol. 136, p. 102807. 8. Wang J., Su H., Chen K., Du D., Zhang L., Shen Z. Effect of δ-ferrite on the stress corrosion cracking behavior of 321 stainless steel. Corrosion Science, 2019, vol. 158, p. 108079. 9. Hu D., Li S.L., Lu S. Effects of TIG process on corrosion resistance of 321 stainless steel welding joint. Materials Science Forum, 2013, vol. 749, pp. 173–179. 10. Davydov A.D., Erokhina O.O., Ryaboshuk S.V., Kovalev P.V. Analysis of the causes of cracks in the production of ingots and forgings from austenitic stainless steel 08Х18Н10Т (AISI 321). Key Engineering Materials, 2020, vol. 854, pp. 16–22. 11. Feshchenko R.Yu., Erokhina O.O., Kvanin A.L., Lutskiy D.S., Vasilyev V.V. Analytical review of the foreign publications about the methods of rise of operating parameters of cathode blocks during 1995–2014. CIS Iron and Steel Review, 2017, vol. 13, pp. 48–52. 12. Man C., Dong C., Kong D., Wang L., Li X. Benefi cial effect of reversed austenite on the intergranular corrosion resistance of martensitic stainless steel. Corrosion Science, 2019, vol. 151, pp. 108–121. 13. Choudhary S. Field experience with chloride stress corrosion cracking of stainless steels below 60° C in condensate stabilization unit. OnePetro, 2022, p. SPE-210992-MS. DOI: 10.2118/210992-MS. 14. Liu Q., Wang C., Neville A., Barker R., Qian J., Pessu F. Corrosion characteristics of iron-nickelchromium alloys in molten nitrate salts under isothermal and thermal cycling conditions. OnePetro, 2022, p. AMPP-2022-17529. Available at: https://onepetro.org/amppcorr/proceedings-pdf/AMPP22/5-AMPP22/ D051S049R002/2724564/ampp-2022-17529.pdf (accessed: 26.01.2023). 15. Kovalyuk E.N., Gorevaya M.A., Tumurova V.P. Izuchenie pittingovoi i mezhkristallitnoi korrozii stalei 12Kh15G9ND i 12Kh18N10T [Study of pitting and intergranular corrosion of steels 12Kh15G9ND and 12Kh18N10T]. Korroziya: materialy, zashchita = Corrosion: Materals, Protection, 2014, no. 7, pp. 27–32. (In Russian). 16. Chubukov A.I., Novikov A.V. [Study of resistance of welded joints of AISI 316TI and 10X17H13M2T and 12X18H10T steels to intergranular corrosion]. Nauka v dvizhenii: ot otrazheniya k sozdaniyu real’nosti: materialy II Vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem [Proceedings of the II AllRussian Scientifi c and Practical Conference with International Participation “Science in motion: from refl ection to the creation of reality”], Almetyevsk, 2017, pp. 173–178. (In Russian). 17. Mao K.S., Sun C., Huang Y., Shiau C.-H., Garner F.A., Freyer P.D., Wharry J.P. Grain orientation dependence of nanoindentation and deformation-induced martensitic phase transformation in neutron irradiated AISI 304L stainless steel. Materialia, 2019, vol. 5, p. 100208. DOI: 10.1016/j.mtla.2019.100208. 18. Saied M. Experimental and numerical modeling of the dissolution of δ-ferrite in the Fe-Cr-Ni system: Application to austenitic stainless steels. PhD thesis. University Grenoble Alpes, 2016. 220 p. 19. Leone G.L., Kerr H.W. The ferrite to austenite transformation in stainless steels. Welding Research Supplement, 1982, vol. 61 (1), pp. 13s–22s. 20. Kalmykova T.D., Kuznetsov V.V. Kinetic and thermodynamic aspects of fl otation benefi ciation of polymetallic raw materials. E3S Web of Conferences, 2021, vol. 266, p. 02015. DOI: 10.1051/e3sconf/202126602015.

RkJQdWJsaXNoZXIy MTk0ODM1