Determination of the optimal metal processing mode when analyzing the dynamics of cutting control systems

OBRABOTKAMETALLOV Vol. 25 No. 1 2023 42 TECHNOLOGY References 1. Stépán G. Modelling nonlinear regenerative effects in metal cutting. Philosophical Transactions of The Royal Society A: Mathematical Physical and Engineering Sciences, 2001, vol. 359, pp. 739–757. DOI: 10.1098/ rsta.2000.0753. 2. Litak G. Chaotic vibrations in a regenerative cutting process. Chaos, Solitons and Fractals, 2002, vol. 13, pp. 1531–1535. DOI: 10.1016/S0960-0779(01)00176-X. 3. Namachchivaya S., Beddini R. Spindle speed variation for the suppression of regenerative chatter. Journal of Nonlinear Science, 2003, vol. 13, pp. 265–288. DOI: 10.1007/s00332-003-0518-4. 4. Wahi P., Chatterjee A. Regenerative tool chatter near a codimension 2 Hopf point using multiple scales. Nonlinear Dynamics, 2005, vol. 40, iss. 4, pp. 323–338. 5. Stépán G., Insperger T., Szalai R. Delay, parametric excitation, and the nonlinear dynamics of cutting processes. International Journal of Bifurcation and Chaos, 2005, vol. 15, no. 09, pp. 2783–2798. DOI: 10.1142/ S0218127405013642. 6. Moradi H., Bakhtiari-Nejad F., Movahhedy M.R., Ahmadian M.T. Nonlinear behaviour of the regenerative chatter in turning process with a worn tool: forced oscillation and stability analysis. Mechanism and Machine Theory, 2010, vol. 45, iss. 8, pp. 1050–1066. DOI: 10.1016/j.mechmachtheory.2010.03.014. 7. Gouskov A.M., Voronov S.A., Paris H., Batzer S.A. Nonlinear dynamics of a machining system with two interdependent delays. Communications in Nonlinear Science and Numerical Simulation, 2002, vol. 7, no. 4, pp. 207– 221. DOI: 10.1016/S1007-5704(02)00014-X. 8. Lapshin V.P. Turning tool wear estimation based on the calculated parameter values of the thermodynamic subsystem of the cutting system. Materials, 2021, vol. 14, no. 21, p. 6492. DOI: 10.3390/ma14216492. 9. Lapshin V.P., Khristoforova V.V., Nosachev S.V. Vzaimosvyaz’ temperatury i sily rezaniya s iznosom i vibratsiyami instrumenta pri tokarnoi obrabotke metallov [Relationship of temperature and cutting force with tool wear and vibration in metal turning]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2020, vol. 22, no. 3, pp. 44–58. DOI: 10.17212/1994-6309-2020-22.3-44-58. 10. Zakovorotny V.L., Gvindjiliya V.E. Evolution of the dynamic cutting system with irreversible energy transformation in the machining zone. Russian Engineering Research, 2019, vol. 39, no. 5, pp. 423–430. DOI: 10.3103/ S1068798X19050204. 11. Zakovorotny V.L., Gvinjiliya V.E. Svyaz’ prityagivayushchikh mnozhestv deformatsii instrumenta s prostranstvennoi orientatsiei uprugosti i regeneratsiei sil rezaniya pri tochenii [Correlation of attracting sets of tool deformations with spatial orientation of tool elasticity and regeneration of cutting forces in turning]. Izvestiya vuzov. Prikladnaya nelineinaya dinamika = Izvestiya VUZ. Applied Nonlinear Dynamics, 2022, vol. 30 (1), pp. 37–56. DOI: 10.18500/0869-6632-2022-30-1-37-56. 12. Zakovorotny V.L., Gvinjiliya V.E. Self-organization and evolution in dynamic friction systems. Journal of Vibroengineering, 2021, vol. 23, iss. 6, pp. 1418–1432. DOI: 10.21595/jve.2021.22033. 13. Astakhov V.P. The assessment of cutting tool wear. International Journal of Machine Tools and Manufacture, 2004, vol. 44, pp. 637–647. DOI: 10.1016/j.ijmachtools.2003.11.006. 14. Ryzhkin A.A. Sinergetika iznashivaniya instrumental’nykh rezhushchikh materialov (triboelektricheskii aspekt) [Synergetics of wear of tool cutting materials (triboelectric aspect)]. Rostov-on-Don, DSTU Publ., 2004. 323 p. ISBN 5-7890-0307-9. 15. Pereda J.A., Vielva L.A., Vegas A., Prieto A. Analyzing the stability of the FDTD technique by combining the von Neumann method with the Routh-Hurwitz criterion. IEEE Transactions on Microwave Theory and Techniques, 2001, vol. 49 (2), pp. 377–381. 16. Kolev L., Petrakieva S. Interval Raus criterion for stability analysis of linear systems with dependent coeffi cients in the characteristic polynomial. 27th International Spring Seminar on Electronics Technology: Meeting the Challenges of Electronics Technology Progress. IEEE, 2004, vol. 1, pp. 130–135. 17. Zakovorotny V.L., Gvinjiliya V.E. Svyaz’ samoorganizatsii dinamicheskoi sistemy rezaniya s iznashivaniem instrumenta [Link between the self-organization of dynamic cutting system and tool wear]. Izvestiya vuzov. Prikladnaya nelineinaya dinamika = Izvestiya VUZ. Applied Nonlinear Dynamics, 2020, vol. 28, no. 1, pp. 46–61. DOI: 10.18500/0869-6632-2020-28-1-46-61. 18. Velieva T.R., Kulyabov D.S., Korolkova A.V., Zaryadov I.S. The approach to investigation of the the regions of self-oscillations. Journal of Physics: Conference Series, 2017, vol. 937, p. 012057. DOI: 10.1088/17426596/937/1/012057.

RkJQdWJsaXNoZXIy MTk0ODM1