Experimental study of the dynamics of the machining process by ball-end mills

OBRABOTKAMETALLOV Vol. 25 No. 1 2023 technology 2. PimenovD.Yu., GuptaM.K., da Silva L.R.R., KiranM., Khanna N., KrolczykG.M.Application of measurement systems in tool condition monitoring of milling: A review of measurement science approach. Measurement, 2022, vol. 199, p. 111503. DOI: 10.1016/j.measurement.2022.111503. 3. Kuznetsova V.B., Kondusov D.V., Serdyuk A.I., Sergeev A.I. Monitoring system for high-tech equipment. Russian Engineering Research, 2017, vol. 37, no. 10, pp. 892–896. DOI: 10.3103/S1068798X17100136. 4. Mohamed A., Hassan M., M’Saoubi R., Attia H. Tool condition monitoring for high-performance machining systems – A review. Sensors, 2022, vol. 22, p. 2206. DOI: 10.3390/s22062206. 5. Mali R.A., Gupta T.V.K., Ramkumar J. A comprehensive review of free-form surface milling – Advances over a decade. Journal of Manufacturing Processes, 2021, vol. 62, pp. 132–167. DOI: 10.1016/j.jmapro.2020.12.014. 6. Gimadeev M.R., Li A.A. Analysis of systems for automated provision of surface roughness parameters based on dynamic monitoring. Advanced Engineering Research, 2022, vol. 22 (2), pp. 116–129. DOI: 10.23947/26871653-2022-22-2-116-129. 7. Pimenov D.Y., Hassui A., Wojciechowski S., Mia M., Magri A., Suyama D.I., Bustillo A., Krolczyk G., Gupta M.K. Effect of the relative position of the face milling tool towards the workpiece on machined surface roughness and milling dynamics. Applied Sciences, 2019, vol. 9 (5), p. 842. DOI: 10.3390/app9050842. 8. Tan L., Yao C., Ren J., Zhang D. Effect of cutter path orientations on cutting forces, tool wear, and surface integrity when ball end milling TC17. The International Journal of Advanced Manufacturing Technology, 2017, vol. 88, pp. 2589–2602. DOI: 10.1007/s00170-016-8948-y. 9. Kozochkin M.P., Sabirov F.S., Bogan A.N., Myslivcev K.V. Monitoring sostoyaniya tekhnologicheskogo oborudovaniya na promyshlennykh predpriyatiyakh [Monitoring of process equipment for industrial enterprises]. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta = Scientific journal of Ufa State Aviation Technical University, 2013, vol. 17, no. 8 (61), pp. 56–62. (In Russian). 10. Shaffer D., Ragai I., Danesh-Yazdi A., Loker D. Investigation of the feasibility of using microphone arrays in monitoring machining. Manufacturing Letters, 2018, vol. 15 (B), pp. 132–134. DOI: 10.1016/j.mfglet.2017.12.008. 11. Kozlov A.A., Al-Jonid Kh. Diagnostika i prognozirovanie iznosa rezhushchego instrumenta v real’nom vremeni [Diagnosis and prediction of cutting tool wear in real time]. Sovremennye materialy, tekhnika i tekhnologii = Modern materials, equipment and technologies, 2017, no. 4 (12), pp. 17–21. (In Russian). 12. Chen Y.P., Gao J., Deng H., Zheng D. Spatial statistical analysis and compensation of machining errors for complex surfaces. Precision Engineering, 2013, vol. 37, no. 1, pp. 203–212. DOI: 10.1016/j.precisioneng.2012.08.003. 13. Cheng D.J., Quan H.J., Kim S.J., Zhang S.W., Zhang C.Y. Modeling of time–varying surface roughness considering wear overlap per tooth in ball end finish milling. Arabian Journal for Science and Engineering, 2021, vol. 46, pp. 12309–12330. DOI: 10.1007/s13369-021-05920-0. 14. Cooper C., Wang P., Zhang J., Gao R.X., Roney T., Ragai I., Shaffer D. Convolutional neural networkbased tool condition monitoring in vertical milling operations using acoustic signals. Procedia Manufacturing, 2020, vol. 49, pp. 105–111. DOI: 10.1016/j.promfg.2020.07.004. 15. Patwari A.U., Zamee A.A., Bhuiyan M.H., Sakib S.M. The surface roughness analysis using sound signal in turning of mild steel. IOP Conference Series: Materials Science and Engineering, 2019, vol. 703, p. 012011. DOI: 10.1088/1757-899X/703/1/012011. 16. Sahinoglu A., Rafighi M. Investigation of vibration, sound intensity, machine current and surface roughness values of AISI 4140 during machining on the lathe. Arabian Journal for Science and Engineering, 2020, vol. 45, pp. 765–778. DOI: 10.1007/s13369-019-04124-x. 17. Lukyanov A.V., Aleynikov D.P. Issledovanie kolebanii sil vzaimodeistviya frezy s zagotovkoi pri povyshenii skorosti vrashcheniya shpindelya [Analysis of oscillations of cutting forces between a mill and a work-piece when increasing the spindle rotation speed]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie = Modern Technologies. System Analysis. Modeling, 2017, vol. 56, no. 4, pp. 70–82. DOI: 10.26731/1813-9108.2017. 4(56).70-82. 18. Aleinikov D.P., Lukyanov A.V. Issledovanie dinamiki krepleniya datchikov vibratsii shpindelei obrabatyvayushchikh tsentrov [Studying fixation dynamics of machining center spindle vibration sensors]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta = Bulletin of Irkutsk State Technical University, 2015, no. 2 (97), pp. 28–35. 19. Zakovorotny V.L., Gvindjiliya V.E. Sinergeticheskii podkhod k povysheniyu effektivnosti upravleniya protsessami obrabotki na metallorezhushchikh stankakh [Synergetic approach to improve the efficiency of machining process control on metalcutting machines]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2021, vol. 23, no. 3, pp. 84–99. DOI: 10.17212/1994-6309-2021-23.3-84-99.

RkJQdWJsaXNoZXIy MTk0ODM1