Simulation of the relationship between input factors and output indicators of the internal grinding process, considering the mutual vibrations of the tool and the workpiece

OBRABOTKAMETALLOV technology Vol. 25 No. 1 2023 18. Vitenberg Yu.R. Primenenie korrelyatsionnoi teorii dlya otsenki shlifovannoi poverkhnosti [Application of the correlation theory to evaluate the polished surface]. Vestnik mashinostroeniya = Soviet Engineering Research, 1969, iss. 1, pp. 55–57. (In Russian). 19. Linnik Yu.V., Khusu A.P. Matematiko-staticheskoe opisanie nerovnostei profilya poverkhnosti pri shlifovanii [Mathematical and static description of surface profile irregularities during grinding]. Inzhenernyi sbornik = Engineering Review, 1954, vol. 20, pp. 154–159. 20. Popov S.A., Malevskiy N.P., Tereshchenko L.M. Almazno-abrazivnaya obrabotka metallov i tverdykh splavov [Diamond-abrasive processing of metals and hard alloys]. Moscow, Mashinostroenie Publ., 1977. 264 p. 21. Shchegolev V.A., Ulanova M.E. Elastichnye abrazivnye i almaznye instrumenty [Elastic abrasive and diamond tools]. Leningrad, Mashinostroenie Publ., 1977. 148 p. 22. KhusuA.P., Vitenberg Yu.R., Pal’mov V.A. Sherokhovatost’poverkhnostei: teoretiko-veroyatnostnyi podkhod [Roughness of surfaces: a probabilistic approach]. Moscow, Nauka Publ., 1975. 344 p. 23. Okamura K., Nakajima T. Elastic properties of grinding weel. Memories of the Faculty of Engineering, Kyoto University, 1969, vol. 31, pt. 4, pp. 490–517. 24. Stadnik T.V. Povyshenie effektivnosti obrabotki dlinnomernykh tsilindricheskikh zagotovok iz alyuminievykh i titanovykh splavov na operatsiyakh lentochnogo rotatsionnogo shlifovaniya. Diss. kand. tekhn. nauk. [Improving the efficiency of processing long cylindrical workpieces on aluminum and titanium alloys in operations of belt rotary grinding. PhD eng. sci. diss.]. Sevastopol, 2022. 198 p. 25. Bratan S.M., Chasovitina A.S. Modelirovanie vliyaniya otnositel’nykh vibratsii instrumenta i zagotovki na s”emmateriala pri vnutrennem shlifovanii [Modelling of tool and piece part relative motion effect on material removal in internal cylindrical grinding]. Naukoemkie tekhnologii v mashinostroenii = Science Intensive Technologies in Mechanical Engineering, 2022, no. 9 (135), pp. 3–9. DOI: 10.30987/2223-4608-2022-9-3-9. 26. Bratan S.M., Roshchupkin S.I., Chasovitina A.S., Gupta K. Vliyanie na veroyatnost’ udaleniya materiala otnositel’nykh vibratsii abrazivnogo instrumenta i zagotovki pri chistovom shlifovanii [The effect of the relative vibrations of the abrasive tool and the workpiece on the probability of material removing during finishing grinding]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2022, vol. 24, no. 1, pp. 33–47. DOI: 10.17212/19946309-202224.13347. 27. Bratan S., Roshchupkin S., Chasovitina A. The correlation of movements in the technological system during grinding precise holes. Materials Science Forum, 2021, vol. 1037, pp. 384–389. DOI: 10.4028/www.scientific.net/ MSF.1037.384. 28. Kharchenko A., Chasovitina A., Bratan S. Modeling of regularities of change in profile sizes and wear areas of abrasive wheel grains during grinding. Materials Today: Proceedings, 2021, vol. 38, pt. 4, pp. 2088–2091. DOI: 10.1016/j.matpr.2020.10.154. Conflicts of Interest The authors declare no conflict of interest.  2023 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

RkJQdWJsaXNoZXIy MTk0ODM1