OBRABOTKAMETALLOV Vol. 23 No. 3 2021 MATERIAL SCIENCE EQUIPMENT. INSTRUMENTS 5 1 3 28. Podgornyj Yu.I., Martynova T.G., Skeeba V.Yu. K voprosu ob ogranichenii neravnomernosti dvizheniya tekhnologicheskoi mashiny v zadannykh predelakh [On the issue of limiting the irregular motion of a technological machine within specifed limits]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2022, vol. 24, no. 2, pp. 67–77. DOI: 10.17212/1994-6309-2022-24.2-67-77. 29. Vulfson I. Dynamics of cyclic machines. Cham, Springer International, 2015. 390 p. Foundations of Engineering Mechanics. ISBN 978-3-319-12633-3. eISBN 978-3-319-12634-0. DOI: 10.1007/978-3-319-12634-0. 30. Ondrášek J. The synthesis of a hook drive cam mechanism. Procedia Engineering, 2014, vol. 92, pp. 320– 329. DOI: 10.1016/j.proeng.2014.12.129. 31. Mott R.L. Machine elements in mechanical design. 5th ed. Upper Saddle River, NJ, Pearson, 2013. 816 p. ISBN 0135077931. ISBN 978-0135077931. 32. Zhou C., Hu B., Chen S., Mac L. Design and analysis of high-speed cam mechanism using Fourier series. Mechanism and Machine Theory, 2016, vol. 104, pp. 118–129. DOI: 10.1016/j.mechmachtheory.2016.05.009. 33. Kodnyanko V., Shatokhin S., Kurzakov A., Pikalov Y. Theoretical analysis of compliance and dynamics quality of a lightly loaded aerostatic journal bearing with elastic orifi ces. Precision Engineering, 2021, vol. 68, pp. 72–81. DOI: 10.1016/j.precisioneng.2020.11.012. 34. Xu L.X., Chen B.K., Li C.Y. Dynamic modelling and contact analysis of bearing-cycloid-pinwheel transmission mechanisms used in joint rotate vector reducers. Mechanism and Machine Theory, 2019, vol. 137, pp. 432–458. DOI: 10.1016/j.mechmachtheory.2019.03.035. 35. Zhang T., Li X., Wang Y., Sun L. A semi-analytical load distribution model for cycloid drives with tooth profi le and longitudinal modifi cations. Applied Sciences, 2020, vol. 10, iss. 14, p. 4859. DOI: 10.3390/app10144859. 36. Stocki R., Szolc T., Tauzowski P., Knabel J. Robust design optimization of the vibrating rotor-shaft system subjected to selected dynamic constraints. Mechanical Systems and Signal Processing, 2012, vol. 29, pp. 34–44. DOI: 10.1016/j.ymssp.2011.07.023. 37. Fomin A., Paramonov M. Synthesis of the four-bar double-constraint mechanisms by the application of the Grubler’s method. Procedia Engineering, 2016, vol. 150, pp. 871–877. DOI: 10.1016/j.proeng.2016.07.034. 38. Fomin A., Dvornikov L., Paramonov M., Jahr A. To the theory of mechanisms subfamilies. IOP Conference Series: Materials Science and Engineering, 2016, vol. 124, p. 012055. DOI: 10.1088/1757-899X/124/1/012055. 39. Podgornyj Yu.I., Martynova T.G., Skeeba V.Yu., Lobanov D.V., Martyushev N.V. Algorithm for determining the unbalances of continuous mixers rotors. Journal of Physics: Conference Series, 2021, vol. 1061, p. 012071. DOI: 10.1088/1742-6596/2061/1/012071. 40. Pershin V.F., Pas’ko A.A., Demin O.V. Modelirovanie dvizheniya plastiny v sypuchem materiale [Modeling of plate movement in the granular material]. Vestnik Tambovskogo gosudarstvennogo tekhnicheskogo universiteta = Transactions of the Tambov State Technical University, 2002, vol. 8, no. 3, pp. 444–449. Confl icts of Interest The authors declare no confl ict of interest. 2023 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
RkJQdWJsaXNoZXIy MTk0ODM1