OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 25 No. 1 2023 in an electron beam wire-feed additive manufactured sample. Materials Characterization, 2021, vol. 172, p. 110867. DOI: 10.1016/j.matchar.2020.110867. 18. Utyaganova V.R., Filippov A.V., Shamarin N.N., Vorontsov A.V., Savchenko N.L., Fortuna S.V., Gurianov D.A., Chumaevskii A.V., Rubtsov V.E., Tarasov S.Yu. Controlling the porosity using exponential decay heat input regimes during electron beam wire-feed additive manufacturing of Al-Mg alloy. International Journal of Advanced Manufacturing Technology, 2020, vol. 108, pp. 2823–2838. DOI: 10.1007/s00170-020-05539-9. 19. Zhang X., Shi H., Wang X., Zhang S., Luan P., Hu X., Xu C. Processing, microstructure, and mechanical behavior of AZ31 magnesium alloy fabricated by electron beam additive manufacturing. Journal of Alloys and Compounds, 2023, vol. 938, p. 168567. DOI: 10.1016/j.jallcom.2022.168567. 20. Wolf T., Fu Z., Körner C. Selective electron beam melting of an aluminum bronze: microstructure and mechanical properties. Materials Letters, 2019, vol. 238, pp. 241–244. DOI: 10.1016/j.matlet.2018.12.015. 21. Zykova A.P., Panfilov A.O., Chumaevskii A.V., Vorontsov A.V., Nikonov S.Yu., Moskvichev E.N., Gurianov D.A., Savchenko N.L., Tarasov S.Yu., Kolubaev E.A. Formation of microstructure and mechanical characteristics in electron beam additive manufacturing of aluminum bronze with an in-situ adjustment of the heat input. Russian Physics Journal, 2022, vol. 65, iss. 5, pp. 811–817. DOI: 10.1007/s11182-022-02701-6. 22. Filippov A., Shamarin N., Moskvichev E., Savchenko N., Kolubaev E., Khoroshko E., Tarasov S. The effect of heat input, annealing, and deformation treatment on structure and mechanical properties of electron beam additive manufactured (EBAM) silicon bronze. Materials, 2022, vol. 15, p. 3209. DOI: 10.3390/ma15093209. 23. Khoroshko E.S., Filippov A.V., Shamarin N.N., Moskvichev E.N., Utyaganova V.R., Tarasov S.Yu., Savchenko N.L., Kolubaev E.A., Rubtsov V.E., Lychagin D.V. Structure and mechanical properties of Cu–Al–Si–Mn system-based copper alloy obtained by additive manufacturing. Russian Physics Journal, 2021, vol. 64, pp. 333–339. DOI: 10.1007/s11182-021-02333-2. 24. Casting of copper and copper alloys. ASM Handbook. Vol. 15. ASM International, 2008, pp. 1026–1048. 25. Sakai T., Belyakov A., Kaibyshev R., Miura H., Jonas J.J. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Progress in Materials Science, 2014, vol. 60, pp. 130–207. DOI: 10.1016/j.pmatsci.2013.09.002. 26. Ponweiser N., Richter K.W. New investigation of phase equilibria in the systemAl–Cu–Si. Journal of Alloys and Compounds, 2012, vol. 512, pp. 252–263. DOI: 10.1016/j.jallcom.2011.09.076. 27. Iqbal J., Ahmed F., Hasan F. Development of microstructure in silicon-aluminum-bronze. Pakistan Journal of Engineering and Applied Sciences, 2008, vol. 3, pp. 47–53. 28. Miettinen J. Thermodynamic description of the Cu–Al–Si system in the copper-rich corner. Calphad, 2007, vol. 31, pp. 449–456. DOI: 10.1016/j.calphad.2007.05.001. 29. Hisatsune C. Constitution diagram of the copper–silicon–aluminium system. Memoirs of the College of Engineering, Kyoto Imperial University, 1935, vol. 9, pp. 18–47. 30. Wilson F.H. The copper-rich corner of the copper-aluminum-silicon diagram. Metals Technology, 1948, vol. 15, pp. 1–12. 31. Hallstedt B., Gröbner J., Hampl M., Schmid-Fetzer R. Calorimetric measurements and assessment of the binary Cu–Si and ternary Al–Cu–Si phase diagrams. Calphad, 2016, vol. 53, pp. 25–38. Conflicts of Interest The authors declare no conflict of interest. 2023 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
RkJQdWJsaXNoZXIy MTk0ODM1