The effect of borocoppering duration on the composition, microstructure and microhardness of the surface of carbon and alloy steels

OBRABOTKAMETALLOV Vol. 25 No. 1 2023 147 MATERIAL SCIENCE References 1. Busby P.E., Warga M.E., Wells C. Diffusions and solubility of boron in iron and steel. JOM, 1953, vol. 5, pp. 1463–1468. DOI: 10.1007/BF03397637. 2. Prince M., Surya Raj G., Yaswanth Kumar D., Gopalakrishnan P. Boriding of steel: improvement of mechanical properties – a review. High Temperature Material Processes, 2022, vol. 26 (2), pp. 43–89. DOI: 10.1615/ HighTempMatProc.2022041805. 3. Shevchuk E.P., Plotnikov V.A., Bektasova G.S. Diffuziya bora pri borirovanii uglerodistoi stali [Boron diffusion during carbon steel boriding]. Izvestiya Altaiskogo gosudarstvennogo universiteta = Izvestiya of Altai State University, 2021, no. 1 (117), pp. 64–65. DOI: 10.14258/izvasu(2021)1-10. 4. Yu L.G., Chen X.J., Khor K.A., Sundararajan G. FeB/Fe2B phase transformation during SPS pack-boriding: Boride layer growth kinetics. Acta Materialia, 2005, vol. 53, pp. 2361–2368. DOI: 10.1016/j.actamat.2005.01.043. 5. Bernal-Ponce J., Irvin-MartinezA., Vera-Cardenas E., Garcia-BarrientosA., Medina-FloresA., Bejar-Gomez L., Borjas-Garcia S. A microstructure comparison of Iron borides formed on AISI 1040 and D2 steels. Microscopy and Microanalysis, 2015, vol. 21, suppl. 3, pp. 1759–1760. DOI: 10.1017/S1431927615009575. 6. Mishustin N.M., Ivanaiskii V.V., IshkovA.V. Sostav, struktura i svoistva iznosostoikikh pokrytii, poluchennykh na stalyakh 65G i 50KhGA pri skorostnom TVCh-borirovanii [Composition, structure and properties of wearresistant coatings obtained on steels 65G and 50KhGAwith high-speed high-frequency boriding]. Izvestiya Tomskogo politekhnicheskogo universiteta = Bulletin of the Tomsk Polytechnic University, 2012, vol. 320, no. 2, pp. 68–72. 7. Balanovskii A.E., Vu V. Plazmennaya poverkhnostnaya tsementatsiya s ispol’zovaniem grafi tovogo pokrytiya [Plasma surface carburizing with graphite paste]. Pis’ma o materialakh = Letters on Materials, 2017, vol. 7, no. 2, pp. 175–179. DOI: 10.22226/2410-3535-2017-2-175-179. 8. Kolosov A.D., Gozbenko V.E., Shtayger M.G., Kargapoltsev S.K., Balanovskiy A.E., Karlina A.I., Sivtsov A.V., Nebogin S.A. Comparative evaluation of austenite grain in high-strength rail steel during welding, thermal processing and plasma surface hardening. IOP Conference Series: Materials Science and Engineering, 2019, vol. 560. DOI: 10.1088/1757-899X/560/1/012185. 9. Cherkasova T.G., Cherkasova E.V., Tikhomirova A.V., Gilyazidinova N.V., Klyuev R.V., Martyushev N.V., Karlina A.I., Skiba V.Yu. Study of matrix and rare elements in ash and slag waste of a thermal power plant concerning the possibility of their extraction. Metallurgist, 2022, vol. 65 (11–12), pp. 1324–1330. DOI: 10.1007/s11015-02201278-2. 10. Mamadaliev R.A., Bakhmatov P.V., Martyushev N.V., Skeeba V.Yu., Karlina A.I. Infl uence of welding regimes on structure and properties of steel 12KH18N10T weld metal in different spatial positions. Metallurgist, 2022, vol. 65 (11–12), pp. 1255–1264. DOI: 10.1007/s11015-022-01271-9. 11. Nokhrina O.I., Gizatulin R.A., Golodova M.A., Proshunin I.E., Valuev D.V., Martyushev N.V., Karlina A.I. Alloying and modifi cation of iron-carbon melts with natural and man-made materials. Metallurgist, 2022, vol. 65 (11– 12), pp. 1429–1448. DOI: 10.1007/s11015-022-01289-z. 12. Malushin N.N., Martyushev N.V., Valuev D.V., Karlina A.I., Kovalev A.P., Gizatulin R.A. Strengthening of metallurgical equipment parts by plasma surfacing in nitrogen atmosphere. Metallurgist, 2022, vol. 65 (11–12), pp. 1468–1475. DOI: 10.1007/s11015-022-01292-4. 13. Balanovskiy A.E., Van Huy V. Estimation of wear resistance of plasma-carburized steel surface in conditions of abrasive wear. Journal of Friction and Wear, 2018, vol. 39, pp. 311–318. DOI: 10.3103/S1068366618040025. 14. Balanovskiy A.Е., Shtayger M.G., Karlina А.I., Kargapoltsev S.K., Gozbenko V.E., Karlina Yu.I., GovorkovA.S., Kuznetsov B.O. Surface hardening of structural steel by cathode spot of welding arc. IOP Conference Series: Materials Science and Engineering, 2019, vol. 560, p. 012138. DOI: 10.1088/1757-899X/560/1/012138. 15. Nguyen V.T., Astafeva N.A., Balanovskiy A.E. Study of the formation of the alloyed surface layer during plasma heating of mixtures of Cu-Sn CrXCYalloys. Tribology in Industry, 2021, vol. 43, pp. 386–396. DOI: 10.24874/ ti.1070.03.21.05. 16. Bataev I.A., Bataev A.A., Golkovsky M.G., Teplykh A.Yu., Burov V.G., Veselov S.V. Non-vacuum electronbeam boriding of low-carbon steel. Surface and Coatings Technology, 2012, vol. 207, pp. 245–253. DOI: 10.1016/j. surfcoat.2012.06.081. 17. Bataev I.A., Bataev A.A., Golkovski M.G., Krivizhenko D.S., Losinskaya A.A., Lenivtseva O.G. Structure of surface layers produced by non-vacuum electron beam boriding. Applied Surface Science, 2013, vol. 284, iss. 2, pp. 472–481. DOI: 10.1016/j.apsusc.2013.07.121. 18. Mishigdorzhiyn U., Chen Y., Ulakhanov N., Liang H. Microstructure and wear behavior of tungsten hot-work steel after boriding and boroaluminizing. Lubricants, 2020, vol. 8, iss. 3, p. 26. DOI: 10.3390/lubricants8030026.

RkJQdWJsaXNoZXIy MTk0ODM1