Hybrid technological equipment: on the issue of a rational choice of objects of modernization when carrying out work related to retrofitting a standard machine tool system with an additional concentrated energy source

OBRABOTKAMETALLOV Vol. 25 No. 2 2023 59 EQUIPMENT. INSTRUMENTS 42. Иванцивский В.В., Скиба В.Ю. Гибридное металлообрабатывающее оборудование. Технологические аспекты интеграции операций поверхностной закалки и абразивного шлифования: монография. – Новосибирск: Изд-во НГТУ, 2019. – 348 с. – ISBN9785-7782-3988-3. 43. Wear behavior of innovative niobium carbide cutting tools in ultrasonic-assisted fi nishing milling / J. Witte, D. Huebler, D. Schroepfer, A. Boerner, T. Kannengiesser // Wear. – 2023. – Vol. 522. – P. 204722. – DOI: 10.1016/j.wear.2023.204722. 44. Hybrid-hybrid turning of micro-SiCp/AA2124 composites: A comparative study of laser-and-ultrasonic vibration-assisted machining / J. Kim, L. Zani, A. Abdul-Kadir, A. Roy, K.P. Baxevanakis, L.C.R. Jones, V.V. Silberschmidt // Journal of Manufacturing Processes. – 2023. – Vol. 86. – P. 109–125. – DOI: 10.1016/j. jmapro.2022.12.045. 45. High-frequency electrical discharge assisted milling of Inconel 718 under copper-beryllium bundle electrodes / M. Xu, R. Wei, C. Li, T.J. Ko // Journal of Manufacturing Processes. – 2023. – Vol. 85. – P. 1116– 1132. – DOI: 10.1016/j.jmapro.2022.12.026. 46. Numerical simulation and experimental investigation of structured surface generated by 3D vibrationassisted milling / B. Lv, B. Lin, Z. Cao,W. Liu, G.Wang // Journal of Manufacturing Processes. – 2023. – Vol. 89. – P. 371–383. – DOI: 10.1016/j.jmapro.2023.01.010. 47. Jeon Y., Lee C.M. Current research trend on laser assisted machining // International Journal of Precision Engineering and Manufacturing. – 2012. – Vol. 13, iss. 2. – P. 311–317. – DOI: 10.1007/s12541-012-0040-4. 48. Kim E.-J., Lee C.-M., Kim D.-H. The eff ect of post-processing operations on mechanical characteristics of 304L stainless steel fabricated using laser additive manufacturing // Journal of Materials Research and Technology. – 2021. – Vol. 15. – P. 1370–1381. – DOI: DOI.org/10.1016/j.jmrt.2021.08.142. 49. Ahn J.W., Woo W.S., Lee C.M. A study on the energy effi ciency of specifi c cutting energy in laser-assisted machining // Applied Thermal Engineering. – 2016. – Vol. 94. – P. 748–753. – DOI: 10.1016/j.applthermaleng.2015.10.129. 50. High-power diode laser assisted hard turning of AISI D2 tool steel / P. Dumitrescu, P. Koshy, J. Stenekes, M.A. Elbestawi // International Journal of Machine Tools and Manufacture. – 2016. – Vol. 46, iss. 15. – P. 2009– 2016. – DOI: 10.1016/j.ijmachtools.2006.01.005. 51. Venkatesan K., Ramanujam R., Kuppan P. Laser assisted machining of diffi cult to cut materials: research opportunities and future directions – a comprehensive review // Procedia Engineering. – 2014. – Vol. 97. – P. 1626–1636. – DOI: 10.1016/j.proeng.2014.12.313. 52. Laser-assisted milling of advanced materials / C. Brecher, M. Emonts, C.-J. Rosen, J.-P. Hermani // Physics Procedia. – 2011. – Vol. 12. – P. 599–606. – DOI: 10.1016/j.phpro.2011.03.076. 53. Zaeh M.F., Wiedenmann R., Daub R. A thermal simulation model for laser-assisted milling // Physics Procedia. – 2010. – Vol. 5. – P. 353–362. – DOI: 10.1016/j. phpro.2010.08.062. 54. Kim I.-W., Lee C.-M. A study on the machining characteristics of specimens with spherical shape using laser-assisted machining // Applied Thermal Engineering. – 2016. – Vol. 100. – P. 636–645. – DOI: 10.1016/j. applthermaleng.2016.02.005. 55. Choi Y.H., Lee C.M. A study on the machining characteristics of AISI 1045 steel and inconel 718 with circular cone shape in induction assisted machining // Journal of Manufacturing Processes. – 2018. – Vol. 34. – P. 463–476. – DOI: 10.1016/j.jmapro.2018.06.023. 56. Woo W.S., Lee C.M. A study on the optimum machining conditions and energy effi ciency of a laserassisted fi llet milling // International Journal of Precision Engineering and Manufacturing-Green Technology. – 2018. – Vol. 5, iss. 5. – P. 593–604. – DOI: 10.1007/ s40684-018-0061-2. 57. Ha J.-H., Lee C.-M. A study on the thermal eff ect by multi heat sources and machining characteristics of laser and induction assisted milling // Materials. – 2019. – Vol. 12, iss. 7. – P. 1032. – DOI: 10.3390/ma12071032. 58. Kim E.J., Lee C.M. A study on the optimal machining parameters of the induction assisted milling with Inconel 718 // Materials. – 2019. – Vol. 12, iss. 2. – P. 233. – DOI: 10.3390/ma12020233. 59. Kim J.-H., Kim E.-J., Lee C.-M. A study on the heat aff ected zone and machining characteristics of diffi cult-to-cut materials in laser and induction assisted machining // Journal of Manufacturing Processes. – 2020. – Vol. 57. – P. 499–508. – DOI: 10.1016/j. jmapro.2020.07.013. 60. Kim E.-J., Lee C.-M. Experimental study on power consumption of laser and induction assisted machining with Inconel 718 // Journal of Manufacturing Processes. – 2020. – Vol. 59. – P. 411–420. – DOI: 10.1016/j.jmapro.2020.09.064. 61. Investigation of surface integrity in laser-assisted machining of nickel based superalloy / D. Xu, Z. Liao, D. Axinte, J.A. Sarasua, R. M’Saoubi, A. Wretland // Materials and Design. – 2020. – Vol. 194. – P. 108851. – DOI: 10.1016/j.matdes.2020.108851. 62. Skeeba V.Yu., Ivancivsky V.V., Martyushev N.V. Peculiarities of high-energy induction heating during surface hardening in hybrid processing conditions // Metals. – 2021. –Vol. 11, iss. 9. – P. 1354. –DOI: 10.3390/ met11091354.

RkJQdWJsaXNoZXIy MTk0ODM1