Hybrid technological equipment: on the issue of a rational choice of objects of modernization when carrying out work related to retrofitting a standard machine tool system with an additional concentrated energy source

OBRABOTKAMETALLOV Vol. 25 No. 2 2023 65 EQUIPMENT. INSTRUMENTS 38. Skeeba V.Yu., Ivantsivsky V.V. Gibridnoe metalloobrabatyvayushchee oborudovanie: povyshenie eff ektivnosti tekhnologicheskogo protsessa obrabotki detalei pri integratsii poverkhnostnoi zakalki i abrazivnogo shlifovaniya [Hybrid metal working equipment: improving the eff ectiveness of the details processing under the integration of surface quenching and abrasive grinding]. Novosibirsk, NSTU Publ., 2018. 312 p. ISBN 978-5-77823690-5. 39. Berenji K.R., Karagüzel U., Özlü E., Budak E. Eff ects of turn-milling conditions on chip formation and surface fi nish. CIRP Annals, 2019, vol. 68, iss. 1, pp. 113–116. DOI: 10.1016/j.cirp.2019.04.067. 40. Skeeba V.Yu., Ivancivsky V.V., Vakhrushev N.V., Parts K.A., Cha G.O. Effi ciency of hybrid equipment combining operations of surface hardening by high frequency currents and abrasive grinding. IOP Conference Series: Earth and Environmental Science, 2018, vol. 194, iss. 2, p. 022038. DOI: 10.1088/1755-1315/194/2/022038. 41. Salonitis K., Chondros T., Chryssolouris G. Grinding wheel eff ect in the grind-hardening process. The International Journal of Advanced Manufacturing Technology, 2008, vol. 38, iss. 1–2, pp. 48–58. DOI: 10.1007/ s00170-007-1078-9. 42. Ivantsivsky V.V., Skeeba V.Yu. Gibridnoe metalloobrabatyvayushchee oborudovanie. Tekhnologicheskie aspekty integratsii operatsii poverkhnostnoi zakalki i abrazivnogo shlifovaniya [Hybrid metal working equipment. Technological aspects of integrating the operations of surface hardening and abrasive grinding]. Novosibirsk, NSTU Publ., 2019. 348 p. ISBN 978-5-7782-3988-3. 43. Witte J., Huebler D., Schroepfer D., Boerner A., Kannengiesser T. Wear behavior of innovative niobium carbide cutting tools in ultrasonic-assisted fi nishing milling. Wear, 2023, vol. 522, p. 204722. DOI: 10.1016/j. wear.2023.204722. 44. Kim J., Zani L., Abdul-Kadir A., Roy A., Baxevanakis K.P., Jones L.C.R., Silberschmidt V.V. Hybridhybrid turning of micro-SiCp/AA2124 composites: A comparative study of laser-and-ultrasonic vibration-assisted machining. Journal of Manufacturing Processes, 2023, vol. 86, pp. 109–125. DOI: 10.1016/j.jmapro.2022.12.045. 45. XuM., Wei R., Li C., Ko T.J. High-frequency electrical discharge assisted milling of Inconel 718 under copperberyllium bundle electrodes. Journal of Manufacturing Processes, 2023, vol. 85, pp. 1116–1132. DOI: 10.1016/j. jmapro.2022.12.026. 46. Lv B., Lin B., Cao Z., Liu W., Wang G. Numerical simulation and experimental investigation of structured surface generated by 3D vibration-assisted milling. Journal of Manufacturing Processes, 2023, vol. 89, pp. 371–383. DOI: 10.1016/j.jmapro.2023.01.010. 47. Jeon Y., Lee C.M. Current research trend on laser assisted machining. International Journal of Precision Engineering and Manufacturing, 2012, vol. 13, iss. 2, pp. 311–317. DOI: 10.1007/s12541-012-0040-4. 48. Kim E.-J., Lee C.-M., Kim D.-H. The eff ect of post-processing operations on mechanical characteristics of 304L stainless steel fabricated using laser additive manufacturing. Journal of Materials Research and Technology, 2021, vol. 15, pp. 1370–1381. DOI: DOI.org/10.1016/j.jmrt.2021.08.142. 49. Ahn J.W., Woo W.S., Lee C.M. A study on the energy effi ciency of specifi c cutting energy in laser-assisted machining. Applied Thermal Engineering, 2016, vol. 94, pp. 748–753. DOI: 10.1016/j.applthermaleng.2015.10.129. 50. Dumitrescu P., Koshy P., Stenekes J., Elbestawi M.A. High-power diode laser assisted hard turning of AISI D2 tool steel. International Journal of Machine Tools and Manufacture, 2016, vol. 46, iss. 15, pp. 2009–2016. DOI: 10.1016/j.ijmachtools.2006.01.005. 51. Venkatesan K., Ramanujam R., Kuppan P. Laser assisted machining of diffi cult to cut materials: research opportunities and future directions – a comprehensive review. Procedia Engineering, 2014, vol. 97, pp. 1626–1636. DOI: 10.1016/j.proeng.2014.12.313. 52. Brecher C., Emonts M., Rosen C.-J., Hermani J.-P. Laser-assisted milling of advanced materials. Physics Procedia, 2011, vol. 12, pp. 599–606. DOI: 10.1016/j.phpro.2011.03.076. 53. Zaeh M.F., Wiedenmann R., Daub R. A thermal simulation model for laser-assisted milling. Physics Procedia, 2010, vol. 5, pp. 353–362. DOI: 10.1016/j.phpro.2010.08.062. 54. Kim I.-W., Lee C.-M. A study on the machining characteristics of specimens with spherical shape using laser-assisted machining. Applied Thermal Engineering, 2016, vol. 100, pp. 636–645. DOI: 10.1016/j. applthermaleng.2016.02.005. 55. Choi Y.H., Lee C.M. A study on the machining characteristics of AISI 1045 steel and inconel 718 with circular cone shape in induction assisted machining. Journal of Manufacturing Processes, 2018, vol. 34, pp. 463– 476. DOI: 10.1016/j.jmapro.2018.06.023. 56. Woo W.S., Lee C.M. A study on the optimum machining conditions and energy effi ciency of a laser-assisted fi llet milling. International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, vol. 5, iss. 5, pp. 593–604. DOI: 10.1007/s40684-018-0061-2.

RkJQdWJsaXNoZXIy MTk0ODM1