Hybrid technological equipment: on the issue of a rational choice of objects of modernization when carrying out work related to retrofitting a standard machine tool system with an additional concentrated energy source

OBRABOTKAMETALLOV Vol. 23 No. 3 2021 MATERIAL SCIENCE EQUIPMENT. INSTRUMENTS 5 2 3 15. Bermingham M.J., Kent D., Dargusch M.S. A new understanding of the wear processes during laser assisted milling 17-4 precipitation hardened stainless steel. Wear, 2015, vol. 328–329, pp. 518–530. DOI: 10.1016/j. wear.2015.03.025. 16. Mohammadi H., Patten J.A. Laser augmented diamond drilling: a new technique to drill hard and brittle materials. Procedia Manufacturing, 2016, vol. 5, pp. 1337–1347. DOI: 10.1016/j.promfg.2016.08.104. 17. Skeeba V.Yu., Ivancivsky V.V. Povyshenie effektivnosti poverkhnostno-termicheskogo uprochneniya detalei mashin v usloviyakh sovmeshcheniya obrabatyvayushchikh tekhnologii, integriruemykh na edinoi stanochnoi baze [Improving the efficiency of surface-thermal hardening of machine parts in conditions of combination of processing technologies, integrated on a single machine tool base]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2021, vol. 23, no. 3, pp. 45–71. DOI: 10.17212/19946309202 123.34571. 18. Venkatesan K. The study on force, surface integrity, tool life and chip on laser assistedmachining of inconel 718 using Nd:YAG laser source. Journal of Advanced Research, 2017, vol. 8, iss. 4, pp. 407–423. DOI: 10.1016/j. jare.2017.05.004. 19. Skeeba V.Yu. Parametric optimization of hybrid metalworking machinery quality. IOP Conference Series: Earth and Environmental Science, 2019, vol. 378, p. 012030. DOI: 10.1088/1755-1315/378/1/012030. 20. Skeeba V.Yu., Skeeba P.Yu. Determining the operational loads of the hybrid metalworking machines drive. IOP Conference Series: Earth and Environmental Science, 2019, vol. 378, p. 012031. DOI: 10.1088/17551315/378/1/012031. 21. Makarov V.M. Kompleksirovannye tekhnologicheskie sistemy: perspektivy i problemy vnedreniya [Well integrated technological systems: prospects and problems of implementation]. Ritm: Remont. Innovatsii. Tekhnologii. Modernizatsiya = RITM: Repair. Innovation. Technologies. Modernization, 2011, no. 6 (64), pp. 20–23. 22. Mitsuishi M., Ueda K., Kimura F., eds. Manufacturing systems and technologies for the new frontier: the 41st CIRP Conference on Manufacturing Systems, May 26–28, 2008, Tokyo, Japan. London, Springer, 2008. 556 p. ISBN 978-1-84800-267-8. DOI: 10.1007/978-1-84800-267-8. 23. Yanyushkin A.S., Lobanov D.V., Arkhipov P.V. Research of influence of electric conditions of the combined electro-diamond machining on quality of grinding of hard alloys. IOP Conference Series: Materials Science and Engineering, 2015, vol. 91, p. 012051. DOI: 10.1088/1757-899X/91/1/012051. 24. Lauwers B., Klocke F., Klink A., Tekkaya A.E., Neugebauer R., Mcintosh D. Hybrid processes in manufacturing. CIRP Annals, 2014, vol. 63, iss. 2, pp. 561–583. DOI: 10.1016/j.cirp.2014.05.003. 25. Garro О., Martin P., Veron M. Shiva a multiarms machine tool. CIRP Annals – Manufacturing Technology, 1993, vol. 42, iss. 1, pp. 433–436. DOI: 10.1016/S0007-8506(07)62479-2. 26. Brecher C., Özdemir D. Integrative production technology: theory and applications. Springer International Publ., 2017. 1100 p. ISBN 978-3-319-47451-9. ISBN 978-3-319-47452-6. DOI: 10.1007/978-3-319-47452-6. 27. Moriwaki T. Multi-functional machine tool. CIRP Annals – Manufacturing Technology, 2008, vol. 57, iss. 2, pp. 736–749. DOI: 10.1016/j.cirp.2008.09.004. 28. Skeeba V., Pushnin V., Erohin I., Kornev D. Integration of production steps on a single equipment. Materials and Manufacturing Processes, 2015, vol. 30, iss. 12. DOI: 10.1080/10426914.2014.973595. 29. Yamazaki T. Development of a hybrid multi-tasking machine tool: integration of additive manufacturing technology with CNC machining. Procedia CIRP, 2016, vol. 42, pp. 81–86. DOI: 10.1016/j.procir.2016.02.193. 30. Punugupati G., Kandi K.K., Bose P.S.C., Rao C.S.P. Laser assisted machining: a state of art review. IOP Conference Series: Materials Science and Engineering, 2016, vol. 149, p. 012014. DOI: 10.1088/1757899X/149/1/012014. 31. Olsson M., Akujärvi V., Ståhl J.-E., Bushlya V. Cryogenic and hybrid induction-assisted machining strategies as alternatives for conventional machining of refractory tungsten and niobium. International Journal of Refractory Metals and Hard Materials, 2021, vol. 97, p. 105520. DOI: 10.1016/j.ijrmhm.2021.105520. 32. Ginta T.L., Amin A.K.M.N. Thermally-assisted end milling of titanium alloy Ti-6Al-4V using induction heating. International Journal of Machining and Machinability of Materials, 2013, vol. 14, iss. 2, pp. 194–212. DOI: 10.1504/IJMMM.2013.055737. 33. Boivie K., Karlsen R., Ystgaard P. The concept of hybrid manufacturing for high performance parts. South African Journal of Industrial Engineering, 2012, vol. 23, iss. 2, pp. 106–115. 34. Yang Y., Gong Y., Qu S., Rong Y., Sun Y., Cai M. Densification, surface morphology, microstructure and mechanical properties of 316L fabricated by hybrid manufacturing. The International Journal of Advanced Manufacturing Technology, 2018, vol. 97, iss. 5–8, pp. 2687–2696. DOI: 10.1007/s00170-018-2144-1.

RkJQdWJsaXNoZXIy MTk0ODM1