Hybrid technological equipment: on the issue of a rational choice of objects of modernization when carrying out work related to retrofitting a standard machine tool system with an additional concentrated energy source

OBRABOTKAMETALLOV MATERIAL SCIENCE Том 23 № 3 2021 EQUIPMEN . INSTRUM TS Vol. 5 No. 2 2023 35. Lobanov D.V., Arkhipov P.V., Yanyushkin A.S., Skeeba V.Yu. Research of influence electric conditions combined electrodiamond processing by on specific consumption of wheel. IOP Conference Series: Materials Science and Engineering, 2016, vol. 142, p. 012081. DOI: 10.1088/1757-899X/142/1/012081. 36. Ding H.T., Shin Y.C. Laser-assisted machining of hardened steel parts with surface integrity analysis. International Journal of Machine Tools and Manufacture, 2010, vol. 50, iss. 1, pp. 106–114. DOI: 10.1016/j. ijmachtools.2009.09.001. 37. Ivancivsky V.V., Skeeba V.Yu. Sovmeshchenie operatsii poverkhnostnoi zakalki i finishnogo shlifovaniya na odnom tekhnologicheskom oborudovanii [Combining the operations of surface hardening and finish grinding on the same processing equipment]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2006, no. 1 (30), pp. 16–18. 38. Skeeba V.Yu., Ivantsivsky V.V. Gibridnoe metalloobrabatyvayushchee oborudovanie: povyshenie effektivnosti tekhnologicheskogo protsessa obrabotki detalei pri integratsii poverkhnostnoi zakalki i abrazivnogo shlifovaniya [Hybrid metal working equipment: improving the effectiveness of the details processing under the integration of surface quenching and abrasive grinding]. Novosibirsk, NSTU Publ., 2018. 312 p. ISBN 978-5-77823690-5. 39. Berenji K.R., Karagüzel U., Özlü E., Budak E. Effects of turn-milling conditions on chip formation and surface finish. CIRP Annals, 2019, vol. 68, iss. 1, pp. 113–116. DOI: 10.1016/j.cirp.2019.04.067. 40. Skeeba V.Yu., Ivancivsky V.V., Vakhrushev N.V., Parts K.A., Cha G.O. Efficiency of hybrid equipment combining operations of surface hardening by high frequency currents and abrasive grinding. IOP Conference Series: Earth and Environmental Science, 2018, vol. 194, iss. 2, p. 022038. DOI: 10.1088/1755-1315/194/2/022038. 41. Salonitis K., Chondros T., Chryssolouris G. Grinding wheel effect in the grind-hardening process. The International Journal of Advanced Manufacturing Technology, 2008, vol. 38, iss. 1–2, pp. 48–58. DOI: 10.1007/ s00170-007-1078-9. 42. Ivantsivsky V.V., Skeeba V.Yu. Gibridnoe metalloobrabatyvayushchee oborudovanie. Tekhnologicheskie aspekty integratsii operatsii poverkhnostnoi zakalki i abrazivnogo shlifovaniya [Hybrid metal working equipment. Technological aspects of integrating the operations of surface hardening and abrasive grinding]. Novosibirsk, NSTU Publ., 2019. 348 p. ISBN 978-5-7782-3988-3. 43. Witte J., Huebler D., Schroepfer D., Boerner A., Kannengiesser T. Wear behavior of innovative niobium carbide cutting tools in ultrasonic-assisted finishing milling. Wear, 2023, vol. 522, p. 204722. DOI: 10.1016/j. wear.2023.204722. 44. Kim J., Zani L., Abdul-Kadir A., Roy A., Baxevanakis K.P., Jones L.C.R., Silberschmidt V.V. Hybridhybrid turning of micro-SiCp/AA2124 composites: A comparative study of laser-and-ultrasonic vibration-assisted machining. Journal of Manufacturing Processes, 2023, vol. 86, pp. 109–125. DOI: 10.1016/j.jmapro.2022.12.045. 45. XuM., Wei R., Li C., Ko T.J. High-frequency electrical discharge assisted milling of Inconel 718 under copperberyllium bundle electrodes. Journal of Manufacturing Processes, 2023, vol. 85, pp. 1116–1132. DOI: 10.1016/j. jmapro.2022.12.026. 46. Lv B., Lin B., Cao Z., Liu W., Wang G. Numerical simulation and experimental investigation of structured surface generated by 3D vibration-assisted milling. Journal of Manufacturing Processes, 2023, vol. 89, pp. 371–383. DOI: 10.1016/j.jmapro.2023.01.010. 47. Jeon Y., Lee C.M. Current research trend on laser assisted machining. International Journal of Precision Engineering and Manufacturing, 2012, vol. 13, iss. 2, pp. 311–317. DOI: 10.1007/s12541-012-0040-4. 48. Kim E.-J., Lee C.-M., Kim D.-H. The effect of post-processing operations on mechanical characteristics of 304L stainless steel fabricated using laser additive manufacturing. Journal of Materials Research and Technology, 2021, vol. 15, pp. 1370–1381. DOI: DOI.org/10.1016/j.jmrt.2021.08.142. 49. Ahn J.W., Woo W.S., Lee C.M. A study on the energy efficiency of specific cutting energy in laser-assisted machining. Applied Thermal Engineering, 2016, vol. 94, pp. 748–753. DOI: 10.1016/j.applthermaleng.2015.10.129. 50. Dumitrescu P., Koshy P., Stenekes J., Elbestawi M.A. High-power diode laser assisted hard turning of AISI D2 tool steel. International Journal of Machine Tools and Manufacture, 2016, vol. 46, iss. 15, pp. 2009–2016. DOI: 10.1016/j.ijmachtools.2006.01.005. 51. Venkatesan K., Ramanujam R., Kuppan P. Laser assisted machining of difficult to cut materials: research opportunities and future directions – a comprehensive review. Procedia Engineering, 2014, vol. 97, pp. 1626–1636. DOI: 10.1016/j.proeng.2014.12.313. 52. Brecher C., Emonts M., Rosen C.-J., Hermani J.-P. Laser-assisted milling of advanced materials. Physics Procedia, 2011, vol. 12, pp. 599–606. DOI: 10.1016/j.phpro.2011.03.076.

RkJQdWJsaXNoZXIy MTk0ODM1