Hybrid technological equipment: on the issue of a rational choice of objects of modernization when carrying out work related to retrofitting a standard machine tool system with an additional concentrated energy source

OBRABOTKAMETALLOV Vol. 23 No. 3 2021 MATERIAL SCIENCE EQUIPMENT. INSTRUMENTS 5 2 3 53. Zaeh M.F., Wiedenmann R., Daub R. A thermal simulation model for laser-assisted milling. Physics Procedia, 2010, vol. 5, pp. 353–362. DOI: 10.1016/j.phpro.2010.08.062. 54. Kim I.-W., Lee C.-M. A study on the machining characteristics of specimens with spherical shape using laser-assisted machining. Applied Thermal Engineering, 2016, vol. 100, pp. 636–645. DOI: 10.1016/j. applthermaleng.2016.02.005. 55. Choi Y.H., Lee C.M. A study on the machining characteristics of AISI 1045 steel and inconel 718 with circular cone shape in induction assisted machining. Journal of Manufacturing Processes, 2018, vol. 34, pp. 463– 476. DOI: 10.1016/j.jmapro.2018.06.023. 56. Woo W.S., Lee C.M. A study on the optimum machining conditions and energy efficiency of a laser-assisted fillet milling. International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, vol. 5, iss. 5, pp. 593–604. DOI: 10.1007/s40684-018-0061-2. 57. Ha J.-H., Lee C.-M. A study on the thermal effect by multi heat sources and machining characteristics of laser and induction assisted milling. Materials, 2019, vol. 12, iss. 7, p. 1032. DOI: 10.3390/ma12071032. 58. Kim E.J., Lee C.M. A study on the optimal machining parameters of the induction assisted milling with Inconel 718. Materials, 2019, vol. 12, iss. 2, p. 233. DOI: 10.3390/ma12020233. 59. Kim J.-H., Kim E.-J., Lee C.-M. A study on the heat affected zone and machining characteristics of difficultto-cut materials in laser and induction assisted machining. Journal of Manufacturing Processes, 2020, vol. 57, pp. 499–508. DOI: 10.1016/j.jmapro.2020.07. 60. KimE.-J., Lee C.-M. Experimental study on power consumption of laser and induction assistedmachining with Inconel 718. Journal of Manufacturing Processes, 2020, vol. 59, pp. 411–420. DOI: 10.1016/j.jmapro.2020.09.064. 61. Xu D., Liao Z., Axinte D., Sarasua J.A., M’Saoubi R., Wretland A. Investigation of surface integrity in laserassisted machining of nickel based superalloy. Materials and Design, 2020, vol. 194, p. 108851. DOI: 10.1016/j. matdes.2020.108851. 62. Skeeba V.Yu., Ivancivsky V.V., Martyushev N.V. Peculiarities of high-energy induction heating during surface hardening in hybrid processing conditions. Metals, 2021, vol. 11, iss. 9, p. 1354. DOI: 10.3390/met11091354. 63. Ma Z., Wang Z., Wang X., Yu T. Effects of laser-assisted grinding on surface integrity of zirconia ceramic. Ceramics International, 2020, vol. 46, iss. 1, pp. 921–929. DOI: 10.1016/j.ceramint.2019.09.051. 64. Skeeba V.Yu., Ivancivsky V.V., Lobanov D.V., Zhigulev A.K., Skeeba P.Yu. Integrated processing: quality assurance procedure of the surface layer of machine parts during the manufacturing step “diamond smoothing”. IOP Conference Series: Materials Science and Engineering, 2015, vol. 25, p. 012031. DOI: 10.1088/1757899X/125/1/012031. 65. Gao K., Qin X. Effect of feed path on the spot continual induction hardening for different curved surfaces of AISI 1045 steel. International Communications in Heat and Mass Transfer, 2020, vol. 115, p. 104632. DOI: 10.1016/j. icheatmasstransfer.2020.104632. 66. Areitioaurtena M., Segurajauregi U., Urresti I., Fisk M., Ukar E. Predicting the induction hardened case in 42CrMo4 cylinder. Procedia CIRP, 2020, vol. 87, pp. 545–550. DOI: 10.1016/j.procir.2020.02.034. 67. Li F., Li X., Wang T., Rong Y.(K.), Liang S.Y. In-process residual stresses regulation during grinding through induction heating with magnetic flux concentrator. International Journal of Mechanical Sciences, 2020, vol. 172, p. 105393. DOI: 10.1016/j.ijmecsci.2019.105393. 68. Hammouma C., Zeroug H. Enhanced frequency adaptation approaches for series resonant inverter control under workpiece permeability effect for induction hardening applications. Engineering Science and Technology, an International Journal, 2022, vol. 27, p. 101006. DOI: 10.1016/j.jestch.2021.05.010. 69. Asadzadeh M.Z., Raninger P., Prevedel P., Ecker W., Mücke M. Hybrid modeling of induction hardening processes. Applications in Engineering Science, 2021, vol. 5, p. 100030. DOI: 10.1016/j.apples.2020.100030. 70. Javaheri V., Haiko O., Sadeghpour S., Valtonen K., Kömi J., Porter D. On the role of grain size on slurry erosion behavior of a novel medium-carbon, low-alloy pipeline steel after induction hardening. Wear, 2021, vol. 476, p. 203678. DOI: 10.1016/j.wear.2021.203678. 71. Ptitsyn S.V., SkeebaV.Yu., ChesovYu.S.,MerezhkoE.V. Nadezhnost’prognoza kachestva tekhnologicheskogo oborudovaniya [Reliability prediction of quality process equipment]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2013, no. 2 (59), pp. 33–38. 72. Skeeba V.Yu., Ivancivsky V.V. Reliability of quality forecast for hybrid metal-working machinery. IOP Conference Series: Earth and Environmental Science, 2018, vol. 194, iss. 2, p. 022037. DOI: 10.1088/17551315/194/2/022037. 73. Fedotenok A.A. Kinematicheskaya struktura metallorezhushchikh stankov [Kinematic structure of machine tools]. Moscow, Mashinostroenie Publ., 1970. 408 p.

RkJQdWJsaXNoZXIy MTk0ODM1