Structure and properties of WC-10Co4Cr coatings obtained with high velocity atmospheric plasma spraying

ОБРАБОТКА МЕТАЛЛОВ Том 25 № 2 2023 88 МАТЕРИАЛОВЕДЕНИЕ V. Luzin, D. Maraisa, N. Sacks, E.N. Ogunmuyiwa, P.H. Shipway // International Journal Refractory Metals and Hard Materials. – 2020. – Vol. 87. – P. 105101. – DOI: 10.1016/j.ijrmhm.2019.105101. 4. Mechanical properties of WC-Co coatings with diff erent decarburization levels / X. Wu, Z.M. Guo, H.B. Wang, X.Y. Song // Rare Metals. – 2014. – Vol. 33, iss. 3. – P. 313–317. – DOI: 10.1007/s12598-014-0257-8. 5. Microstructure and wear behavior of conventional and nanostructured plasma-sprayed WC-Co coatings / E. Sanchez, E. Bannier, M.D. Salvador, V. Bonache, J.C. Garcıa, J. Morgiel, J. Grzonka // Journal of Thermal Spray Technology. – 2010. – Vol. 19, iss. 5. – P. 964– 974. – DOI: 10.1007/s11666-010-9480-5. 6. Liu S.L., Zheng X.P., Geng G.Q. Infl uence of nano-WC-12Co powder addition in WC–10Co–4Cr ACHVAF sprayed coatings on wear and erosion behavior // Wear. – 2010. – Vol. 269, iss. 5–6. – P. 362–367. – DOI: 10.1016/j.wear.2010.04.019. 7. Wear resistance enhancement of HVOF-sprayed WC-Co coating by complete densifi cation of starting powder / H. Wang, Q. Qiu, M. Gee, C. Hou, X. Liu, X. Song // Materials and Design. – 2020. – Vol. 191. – P. 108586. – DOI: 10.1016/j.matdes.2020.108586. 8. Infl uence of the handling parameters on residual stresses of HVOF-sprayed WC-12Co coatings / U. Selvadurai, P. Hollingsworth, I. Baumann, B. Hussong, W. Tillmann, S. Rausch, D. Biermann // Surface and Coatings Technology. – 2015. – Vol. 268. – P. 30–35. – DOI: 10.1016/j.surfcoat.2014.11.055. 9. Ghadami F., Sohi M.H., Ghadami S. Eff ect of bond coat and post-heat treatment on the adhesion of air plasma sprayed WC-Co coatings // Surface and Coatings Technology. – 2015. – Vol. 261. – P. 289–294. – DOI: 10.1016/j.surfcoat.2014.11.016. 10. Yin B., Zhou H.D., Yi D.L. Microsliding wear behavior of HVOF sprayed conventional and nanostructured WC-12Co coatings at elevated temperatures // Surface Engineering. – 2010. – Vol. 26, iss. 6. – P. 469– 477. – DOI: 10.1179/026708410X12506870724352. 11. Eff ects of the dispersion time on the microstructure and wear resistance of WC/Co-CNTs HVOF sprayed coatings / M.A. Rodriguez, L. Gil, S. Camero, N. Freґty, Y. Santana, J. Caro // Surface and Coatings Technology – 2014. – Vol. 258. – P. 38–48. – DOI: 10.1016/j. surfcoat.2014.10.014. 12. Eff ects of WC-Ni content on microstructure and wear resistance of laser cladding Ni-based alloys coating / C. Guo, J. Chen, J. Zhou, J. Zhao, L. Wang, Y. Yu, H. Zhou // Surface and Coatings Technology. – 2012. – Vol. 206. – P. 2064–2071. – DOI: 10.1016/j.surfcoat.2011.06.005. 13. Eff ect of WC-12Co content on wear and electrochemical corrosion properties of Ni-Cu/WC-12Co composite coatings deposited by laser cladding / J. Zhang, J. Lei, Z. Gu, F. Tantai, H. Tian, J. Han, Y. Fang // Surface and Coatings Technology. – 2020. – Vol. 393. – P. 125807. – DOI: 10.1016/j.surfcoat.2020.125807. 14. Jalali Azizpour M., Tolouei-Rad M. The eff ect of spraying temperature on the corrosion and wear behavior of HVOF thermal sprayed WC-Co coatings // Ceramics International. – 2019. – Vol. 45, iss. 11. – P. 13934– 13941. – DOI: 10.1016/j.ceramint.2019.04.091. 15. HVOF sprayed WC-Co coatings: microstructure, mechanical properties and friction moment prediction / T. Sahraoui, S. Guessasma, M. Ali Jeridane, M. Hadji // Materials and Design. – 2010. – Vol. 31, iss. 3. – P. 1431– 1437. – DOI: 10.1016/j.matdes.2009.08.037. 16. He J., Schoenung J.M. A review on nanostructured WC-Co coatings // Surface and Coatings Technology. – 2002. – Vol. 157, iss. 1. – P. 72–79. – DOI: 10.1016/ S0257-8972(02)00141-X. 17. Simultaneous increase of friction coeffi cient and wear resistance through hvof sprayed WC-(nano WCCo) / P.H. Gao, B.Y. Chen, W. Wang, H. Jia, J.P. Li, Z. Yang, Y.C. Guo // Surface and Coatings Technology. – 2019. – Vol. 363. – P. 379–389. – DOI: 10.1016/j.surfcoat.2019.02.042. 18. Ghosh G., Sidpara A., Bandyopadhyay P.P. Understanding the role of surface roughness on the tribological performance and corrosion resistance of WC-Co coating // Surface and Coatings Technology. – 2019. – Vol. 378. – P. 125080. – DOI: 10.1016/j.surfcoat.2019.125080. 19. Dent A.H., Palo S., Sampath S. Examination of the wear properties of HVOF sprayed nanostructured and conventional WC-Co cermets with diff erent binder phase contents // Journal of Thermal Spray Technology. – 2002. – Vol. 11 (4). – P. 551–558. – DOI: 10.1361/ 105996302770348691. 20. Baik K.H., Kim J.H., Seong B.G. Improvements in hardness and wear resistance of thermally sprayed WC-Co nanocomposite coatings // Materials Science and Engineering: A. – 2007. – Vol. 449–451. – P. 846– 849. – DOI: 10.1016/j.msea.2006.02.295. 21. Интерметаллидные покрытия Al3Ti, сформированные при помощи холодного газодинамического напыления и термической обработки / Е.Е. Корниенко, А.Д. Вялова, В.С. Шикалов, В.Ф. Косарев, Т.М. Видюк // Обработка металлов (технология, оборудование, инструменты). – 2020. – Т. 22, № 1. – С. 80–89. – DOI: 10.17212/1994-6309-2020-22.180-89. 22. Quantitative evaluation of the decarburization and microstructure evolution of WC-Co during plasma spraying / Q. Zhan, L. Yu, F. Ye, Q. Xue, H. Li // Surface and Coatings Technology. – 2012. – Vol. 206. – P. 4068– 4074. – DOI: 10.1016/j.surfcoat.2012.03.091.

RkJQdWJsaXNoZXIy MTk0ODM1