Evaluation of vacancy formation energy for BCC-, FCC-, and HCP-metals using density functional theory

ОБРАБОТКА МЕТАЛЛОВ Том 25 № 2 2023 110 МАТЕРИАЛОВЕДЕНИЕ 8. Vacancy formation energies in metals: A comparison of MetaGGA with LDA and GGA exchange– correlation functionals / B. Medasani, M. Haranczyk, A. Canning, M. Asta // Computational Materials Science. – 2015. – Vol. 101. – P. 96–107. – DOI: 10.1016/j. commatsci.2015.01.018. 9. Temperature dependence of the Gibbs energy of vacancy formation of fcc Ni / Y. Gong, B. Grabowski, A. Glensk, F. Körmann, J. Neugebauer, R.C. Reed // Physical Review B. – 2018. – Vol. 97. – P. 214106. – DOI: 10.1103/physrevb.97.214106. 10. Stabilization of Ti5Al11 at room temperature in ternary Ti-Al-Me (Me = Au, Pd, Mn, Pt) systems / D.V. Lazurenko, G.D. Dovzhenko, V.V. Lozanov, I.Y. Petrov, T.S. Ogneva, K.I. Emurlaev, I.A. Bataev // Journal of Alloys and Compounds. – 2023. – Vol. 944. – P. 169244. – DOI: 10.1016/j.jallcom.2023.169244. 11. First-principles calculations for point defects in solids / C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, C.G. Van de Walle // Reviews of Modern Physics. – 2014. – Vol. 86, iss. 1. – P. 253–305. – DOI: 10.1103/revmodphys.86.253. 12. Calculating free energies of point defects from ab initio / X. Zhang, B. Grabowski, T. Hickel, J. Neugebauer // Computational Materials Science. – 2018. – Vol. 148. – P. 249–259. – DOI: 10.1016/j.commatsci.2018. 13. Giustino F. Materials modelling using density functional theory: properties and predictions. – Oxford University Press, 2014. – 286 p. 14. Kohn W., Sham L.J. Self-consistent equations including exchange and correlation eff ects // Physical Review. – 1965. – Vol. 140, iss. 4A. – P. A1133–A1138. – DOI: 10.1103/PhysRev.140.A1133. 15. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation / J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais // PhysicalReviewB. –1992. –Vol. 46, iss. 11. – P. 6671–6687. – DOI: 10.1103/PhysRevB.46.6671. 16. Application of generalized gradient approximations: The diamond–β-tin phase transition in Si and Ge / N. Moll, M. Bockstedte, M. Fuchs, E. Pehlke, M. Scheffl er // Physical Review B. – 1995. – Vol. 52, iss. 4. –P. 2550–2556. –DOI: 10.1103/PhysRevB.52.2550. 17. Effi cacy of surface error corrections to density functional theory calculations of vacancy formation energy in transition metals / P.K. Nandi, M.C. Valsakumar, Sh. Chandra, H.K. Sahu, C.S. Sundar // Journal of Physics: Condensed Matter. – 2010. – Vol. 22. – P. 345501. – DOI: 10.1088/0953-8984/22/34/345501. 18. Density functional study of vacancies and surfaces inmetals / L. Delczeg, E.K. Delczeg-Czirjak, B. Johansson, L. Vitos // Journal of Physics: Condensed Matter. – 2011. – Vol. 23. – P. 045006. – DOI: 10.1088/09538984/23/4/045006. 19. Mortensen J.J., Hansen L.B., Jacobsen K.W. Realspace grid implementation of the projector augmented wave method // Physical Review B. – 2005. – Vol. 71, iss. 3. – P. 035109. – DOI: 10.1103/PhysRevB.71.035109. 20. Electronic structure calculations with GPAW: a real-space implementation of the projector augmentedwave method / J. Enkovaara, C. Rostgaard, J.J. Mortensen et al. // Journal of Physics: Condensed Matter. – 2010. – Vol. 22. – P. 243202. – DOI: 10.1088/09538984/22/25/253202. 21. The atomic simulation environment – A Python library for working with atoms / J. Enkovaara, C. Rostgaard, J.J. Mortensen et al. // Journal of Physics: CondensedMatter. – 2017. –Vol. 29, iss. 27. – P. 273002. – DOI: 10.1088/1361-648X/aa680e. 22. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple // Physical Review Letters. – 1996. – Vol. 77, iss. 18. – P. 3865–3868. – DOI: 10.1103/PhysRevLett.77.3865. 23. Relevance of the Pauli kinetic energy density for semilocal functionals / B. Patra, S. Jana, L.A. Constantin, P. Samal // Physical Review B. – 2019. – Vol. 100. – P. 155140. – DOI: 10.1103/PhysRevB.100.155140. 24. Improving the applicability of the Pauli kinetic energy density based semilocal functional for solids / S. Jana, S.K. Behera, S. Smiga, L.A. Constantin, P. Samal // New Journal of Physics. – 2021. – Vol. 23. – P. 063007. – DOI: 10.1088/1367-2630/abfd4d. 25. Thermal contraction and disordering of theAl(110) surface / N. Marzari, D. Vanderbilt,A. DeVita, M.C. Payne // Physical Review Letters. – 1999. – Vol. 82, iss. 16. – P. 3296–3299. – DOI: 10.1103/PhysRevLett.82.3296. 26. Emery A.A., Wolverton C. High-throughput DFT calculations of formation energy, stability and oxygen vacancy formation energyofABO3 perovskites // Scientifi c Data. – 2017. – Vol. 4. – P. 170153. – DOI: 10.1038/ sdata.2017.153. 27. Hayashiuchi Y., Hagihara T., Okada T. A new interpretation of proportionality between vacancy formation energy and melting point // Physica B+C. – 1982. – Vol. 115, iss. 1. – P. 67–71. – DOI: 10.1016/03784363(82)90056-0. 28. Franklin A.D. Statistical thermodynamics of point defects in crystals // Point Defects in Solids. – Boston, MA: Springer, 1972. – P. 1–101. – DOI: 10.1007/978-14684-2970-1_1. 29. Doyama M., Koehler J.S. The relation between the formation energy of a vacancy and the nearest neighbor interactions in pure metals and liquid metals // Acta Metallurgica. – 1976. – Vol. 24, iss. 9. – P. 871–879. – DOI: 10.1016/0001-6160(76)90055-9. 30. Mattsson T.R., Mattsson A.E. Calculating the vacancy formation energy in metals: Pt, Pd, and Mo // Physical Review B. – 2002. – Vol. 66. – P. 214110. – DOI: 10.1103/PhysRevB.66.214110.

RkJQdWJsaXNoZXIy MTk0ODM1