Evaluation of vacancy formation energy for BCC-, FCC-, and HCP-metals using density functional theory

OBRABOTKAMETALLOV Vol. 25 No. 2 2023 115 MATERIAL SCIENCE References 1. Gorelik S.S., Dobatkin S.V., Kaputkina L.M. Rekristallizatsiya metallov i splavov [Recrystallization of metals and alloys]. Moscow, MISiS Publ., 2005. 432 p.ISBN: 5-87623-103-7. 2. Humphreys F.J., Hatherly M. Hatherly recrystallization and related annealing phenomena. 2nd ed. Elsevier, 2004. 605 p. DOI: 10.1016/B978-0-08-044164-1.X5000-2. 3. Siegel R.W. Vacancy concentrations in metals. Journal of Nuclear Materials, 1978, vol. 69–70, pp. 117–146. DOI: 10.1016/0022-3115(78)90240-4. 4. Mehrer H. Diff usion in solids: fundamentals, methods, materials, diff usion-controlled processes. Springer, 2007. 673 p. DOI: 10.1007/978-3-540-71488-0. 5. Smigelskas A.D., Kirkendall E.O. Zinc diff usion in alpha brass. Transactions of AIME, 1947, vol. 171, pp. 130–142. 6. Paul A., Laurila T., Vuorinen V., Divinski S. Thermodynamics, diff usion and the Kirkendall eff ect in solids. Springer, 2014. 530 p. DOI: 10.1007/978-3-319-07461-0. 7. Kraftmakher Y. Equilibrium vacancies and thermophysical properties of metals. Physics Reports, 1998, vol. 299, iss. 2–3, pp. 79–188. DOI: 10.1016/s0370-1573(97)00082-3. 8. Medasani B., Haranczyk M., Canning A., Asta M. Vacancy formation energies in metals: A comparison of MetaGGA with LDA and GGA exchange–correlation functionals. Computational Materials Science, 2015, vol. 101, pp. 96–107. DOI: 10.1016/j.commatsci.2015.01.018. 9. Gong Y., Grabowski B., Glensk A., Körmann F., Neugebauer J., Reed R.C. Temperature dependence of the Gibbs energy of vacancy formation of fcc Ni. Physical Review B, 2018, vol. 97, p. 214106. DOI: 10.1103/ physrevb.97.214106. 10. Lazurenko D.V., Dovzhenko G.D., Lozanov V.V., Petrov I.Y., Ogneva T.S., Emurlaev K.I., Bataev I.A. Stabilization of Ti5Al11 at room temperature in ternary Ti-Al-Me (Me = Au, Pd, Mn, Pt) systems. Journal of Alloys and Compounds, 2023, vol. 944, p. 169244. DOI: 10.1016/j.jallcom.2023.169244. 11. Freysoldt C., Grabowski B., Hickel T., Neugebauer J., Kresse G., Janotti A., Van deWalle C.G. First-principles calculations for point defects in solids. Reviews of Modern Physics, 2014, vol. 86, iss. 1, pp. 253–305. DOI: 10.1103/ revmodphys.86.253. 12. Zhang X., Grabowski B., Hickel T., Neugebauer J. Calculating free energies of point defects from ab initio. Computational Materials Science, 2018, vol. 148, pp. 249–259. DOI: 10.1016/j.commatsci.2018. 13. Giustino F. Materials modelling using density functional theory: properties and predictions. Oxford University Press, 2014. 286 p. 14. Kohn W., Sham L.J. Self-consistent equations including exchange and correlation eff ects. Physical Review, 1965, vol. 140, iss. 4A, pp. A1133–A1138. DOI: 10.1103/PhysRev.140.A1133. 15. Perdew J.P., Chevary J.A., Vosko S.H., Jackson K.A., Pederson M., Singh D.J., Fiolhais C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 1992, vol. 46, iss. 11, pp. 6671–6687. DOI: 10.1103/PhysRevB.46.6671. 16. Moll N., BockstedteM., FuchsM., Pehlke E., Scheffl er M.Application of generalized gradient approximations: The diamond–β-tin phase transition in Si and Ge. Physical Review B, 1995, vol. 52, iss. 4, pp. 2550–2556. DOI: 10.1103/PhysRevB.52.2550. 17. Nandi P.K., Valsakumar M.C., Chandra Sh., Sahu H.K., Sundar C.S. Effi cacy of surface error corrections to density functional theory calculations of vacancy formation energy in transition metals. Journal of Physics: Condensed Matter, 2010, vol. 22, p. 345501. DOI: 10.1088/0953-8984/22/34/345501. 18. Delczeg L., Delczeg-Czirjak E.K., Johansson B., Vitos L. Density functional study of vacancies and surfaces in metals. Journal of Physics: Condensed Matter, 2011, vol. 23, p. 045006. DOI: 10.1088/0953-8984/23/4/045006. 19. Mortensen J.J., Hansen L.B., Jacobsen K.W. Real-space grid implementation of the projector augmented wave method. Physical Review B, 2005, vol. 71, iss. 3, p. 035109. DOI: 10.1103/PhysRevB.71.035109. 20. Enkovaara J., Rostgaard C., Mortensen J.J., et al. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. Journal of Physics: Condensed Matter, 2010, vol. 22, p. 243202. DOI: 10.1088/0953-8984/22/25/253202. 21. Enkovaara J., Rostgaard C., Mortensen J.J., et al. The atomic simulation environment – A Python library for working with atoms. Journal of Physics: Condensed Matter, 2017, vol. 29, iss. 27, p. 273002. DOI: 10.1088/1361648X/aa680e. 22. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, vol. 77, iss. 18, pp. 3865–3868. DOI: 10.1103/PhysRevLett.77.3865.

RkJQdWJsaXNoZXIy MTk0ODM1