Evaluation of vacancy formation energy for BCC-, FCC-, and HCP-metals using density functional theory

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 25 No. 2 2023 16. Moll N., BockstedteM., FuchsM., Pehlke E., Scheffler M.Application of generalized gradient approximations: The diamond–β-tin phase transition in Si and Ge. Physical Review B, 1995, vol. 52, iss. 4, pp. 2550–2556. DOI: 10.1103/PhysRevB.52.2550. 17. Nandi P.K., Valsakumar M.C., Chandra Sh., Sahu H.K., Sundar C.S. Efficacy of surface error corrections to density functional theory calculations of vacancy formation energy in transition metals. Journal of Physics: Condensed Matter, 2010, vol. 22, p. 345501. DOI: 10.1088/0953-8984/22/34/345501. 18. Delczeg L., Delczeg-Czirjak E.K., Johansson B., Vitos L. Density functional study of vacancies and surfaces in metals. Journal of Physics: Condensed Matter, 2011, vol. 23, p. 045006. DOI: 10.1088/0953-8984/23/4/045006. 19. Mortensen J.J., Hansen L.B., Jacobsen K.W. Real-space grid implementation of the projector augmented wave method. Physical Review B, 2005, vol. 71, iss. 3, p. 035109. DOI: 10.1103/PhysRevB.71.035109. 20. Enkovaara J., Rostgaard C., Mortensen J.J., et al. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. Journal of Physics: Condensed Matter, 2010, vol. 22, p. 243202. DOI: 10.1088/0953-8984/22/25/253202. 21. Enkovaara J., Rostgaard C., Mortensen J.J., et al. The atomic simulation environment – A Python library for working with atoms. Journal of Physics: Condensed Matter, 2017, vol. 29, iss. 27, p. 273002. DOI: 10.1088/1361648X/aa680e. 22. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, vol. 77, iss. 18, pp. 3865–3868. DOI: 10.1103/PhysRevLett.77.3865. 23. Patra B., Jana S., Constantin L.A., Samal P. Relevance of the Pauli kinetic energy density for semilocal functionals. Physical Review B, 2019, vol. 100, p. 155140. DOI: 10.1103/PhysRevB.100.155140. 24. Jana S., Behera S.K., Smiga S., Constantin L.A., Samal P. Improving the applicability of the Pauli kinetic energy density based semilocal functional for solids. New Journal of Physics, 2021, vol. 23, p. 063007. DOI: 10.1088/13672630/abfd4d. 25. Marzari N., Vanderbilt D., De VitaA., Payne M.C. Thermal contraction and disordering of theAl(110) surface. Physical Review Letters, 1999, vol. 82, iss. 16, pp. 3296–3299. DOI: 10.1103/PhysRevLett.82.3296. 26. Emery A.A., Wolverton C. High-throughput DFT calculations of formation energy, stability and oxygen vacancy formation energy of ABO3 perovskites. Scientific Data, 2017, vol. 4, p. 170153. DOI: 10.1038/ sdata.2017.153. 27. Hayashiuchi Y., Hagihara T., Okada T. A new interpretation of proportionality between vacancy formation energy and melting point. Physica B+C, 1982, vol. 115, iss. 1, pp. 67–71. DOI: 10.1016/0378-4363(82)90056-0. 28. Franklin A.D. Statistical thermodynamics of point defects in crystals. Point Defects in Solids. Boston, MA, Springer, 1972, p. 1–101. DOI: 10.1007/978-1-4684-2970-1_1. 29. Doyama M., Koehler J.S. The relation between the formation energy of a vacancy and the nearest neighbor interactions in pure metals and liquidmetals. ActaMetallurgica, 1976, vol. 24, iss. 9, pp. 871–879. DOI: 10.1016/00016160(76)90055-9. 30. Mattsson T.R., Mattsson A.E. Calculating the vacancy formation energy in metals: Pt, Pd, and Mo. Physical Review B, 2002, vol. 66, p. 214110. DOI: 10.1103/PhysRevB.66.214110.

RkJQdWJsaXNoZXIy MTk0ODM1