Evaluation of vacancy formation energy for BCC-, FCC-, and HCP-metals using density functional theory

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 25 No. 2 2023 Ta b l e 2 Parameters for calculating the energy of bulk and vacancy supercells Functional Lattice type N k EPW MV n nv PBE FCC 3 × 3 × 3 3 × 3 × 3 500 0.2 108 107 BCC 54 53 HCP MGGAC FCC 108 107 BCC 54 53 HCP rMGGAC FCC 108 107 BCC 54 53 HCP Note: EPW – kinetic energy cutoff that determines the number of plane waves, eV; MV – the magnitude of the temperature broadening in the Marzari-Vanderbilt distribution, eV; n и nv – the number of atoms in an ideal supercell and a supercell with a single vacancy. For all computations, periodic boundary conditions were set. Appendix B Values of vacancy formation energies in various elements Ta b l e 3 Values of vacancy formation energies (eV) calculated in this work using the correlation-exchange functionals PBE, MGGAC, MetaGGA, along with the data from [8] (calculated values) and [7] (results of PAS) No. Metal Lattice PBE MGGAC rMGGAC LDA [8] PBE [8] PW91 [8] PAS [7] 1 Be HCP 0.96 1.65 1.75 - - - - 2 Mg 0.85 0.96 1.07 0.8 0.77 0.72 - 3 Sc 2.01 2.4 2.51 1.97 1.86 1.8 - 4 Zn 0.41 0.68 0.76 0.5 0.42 0.49 - 5 Y 1.92 2.28 2.37 1.91 1.87 1.82 - 6 Ru 2.84 3.48 3.62 3.03 2.71 2.62 - 7 Cd 0.28 0.66 0.66 – – – - 8 Hf 2.29 3.18 - 2.17 2.24 2.16 - 9 Os 3.04 3.8 - 3.35 3.08 3.02 - 10 Ti 2.23 2.87 2.99 2.08 2.08 1.99 - 11 Co 2.04 2.39 2.56 2.22 1.96 1.9 - 12 Re 3.24 3.86 - 3.65 3.4 3.26 - 13 Zr 2.19 2.82 2.95 - - - - 14 Li BCC 0.64 0.61 0.67 - - - - 15 Na 0.43 0.48 - 0.34 0.33 0.31 - 16 K 0.37 0.41 0.44 0.33 0.3 0.29 0.34 17 V 2.98 3.49 3.76 - 2.27 2.2 2.07 18 Cr 3.05 3.93 4.1 2.85 2.77 2.65 2.0 19 Fe 1.86 2.58 2.71 2.3 2.2 2.14 - 20 Rb 0.32 0.37 0.4 - - - - 21 Nb 3.0 3.49 3.71 3.01 2.77 2.71 2.65

RkJQdWJsaXNoZXIy MTk0ODM1