Experimental studies of high-speed grinding rails modes

OBRABOTKAMETALLOV Vol. 25 No. 3 2023 33 TECHNOLOGY Vol. 46, iss. 3. – P. 343–352. – DOI: 10.1016/j. ijmachtools.2005.05.013. 11. Experimental observation of tool wear in rotary ultrasonic machining of advanced ceramics / W. Zenga, Z. Lib, Z. Peib, C. Treadwell // International Journal of Machine Tools & Manufacture. – 2005. – Vol. 45, iss. 12–13. – P. 1468–1473. 12. Jeong W., Shin J. Grinding eff ect analysis according to control variables of compact rail surface grinding machine // Journal of the Korean Society for Railway. – 2020. – Vol. 23, iss. 7. – P. 688–695. – DOI: 10.7782/ JKSR.2020.23.7.688. 13. Koshin A.A., Chaplygin B.A., Isakov D.V. Adequacy of the operating conditions of abrasive grains // Russian Engineering Research. – 2011. – Vol. 31, N 12. – P. 1221–1226. 14. Особенности формирования технологического процесса плоского шлифования торцом круга при упругой подвеске шлифовальной головки / А.С. Ильиных, В.А. Аксенов, М.С. Галай, А.В. Матафонов // Вестник Пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. – 2016. – Т. 18, № 4. – C. 34–47. – DOI: 10.15593/2224-9877/2016.4.03. 15. A laboratory demonstration of rail grinding and analysis of running roughness and wear / M. Mesaritis, M. Shamsa, P. Cuervo, J. Santa, A. Toro, M. Marshall, R. Lewis // Wear. – 2020. – Vol. 456–457. – DOI: 10.1016/j.wear.2020.203379. 16. Satoh Y., Iwafuchi K. Eff ect of rail grinding on rolling contact fatigue in railway rail used in conventional line in Japan // Wear. – 2008. – Vol. 265, iss. 9–10. – P. 1342–1348. – DOI: 10.1016/j.wear.2008.02.036. 17. Modelling and simulation of the grinding force in rail grinding that considers the swing angle of the grinding stone / K. Zhou, H. Ding, S. Zhang, J. Guo, Q. Liu, W. Wang // Tribology International. – 2019. – Vol. 137. – P. 274–288. – DOI: 10.1016/j.triboint.2019.05.012. 18. Experimental investigation on material removal mechanism during rail grinding at diff erent forward speeds / K. Zhou, H. Ding, R. Wang, J. Yang, J. Guo, Q. Liu, W. Wang // Tribology International. – 2020. – Vol. 143. – P. 106040. – DOI: 10.1016/j.triboint.2019.106040. 19. Infl uence of rail grinding process parameters on rail surface roughness and surface layer hardness / E. Uhlmann, P. Lypovka, L. Hochschild, N. Schröer // Wear. – 2016. – Vol. 366–367. – P. 287–293. – DOI: 10.1016/j. wear.2016.03.023. 20. Jeong W., Shin J. Grinding eff ect analysis according to control variables of compact rail surface grinding machine // Journal of the Korean Society for Railway. – 2020. – Vol. 23, iss. 7. – P. 688 – 695. – DOI:10.7782/ JKSR.2020.23.7.688. 21. Ilinykh A.S. Design of abrasive tool for highrate grinding // IOP Conference Series: Earth and Environmental Science. – 2017. – Vol. 53. – P. 012024. – DOI: 10.1088/1755-1315/53/1/012024. Конфликт интересов Авторы заявляют об отсутствии конфликта интересов. © 2023 Авторы. Издательство Новосибирского государственного технического университета. Эта статья доступна по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная (https://creativecommons.org/licenses/by/4.0).

RkJQdWJsaXNoZXIy MTk0ODM1