Experimental studies of high-speed grinding rails modes

OBRABOTKAMETALLOV Vol. 25 No. 3 2023 technology the cooling system of electric motors and the wiring should be designed for a maximum current load with a 1.5-fold factor, i.e. 80 A. 3. When manufacturing and testing an abrasive tool for the implementation of high-speed rail grinding technology, possible dynamic shock loads of up to 3,500 N. should be taken into account. Experimentally determined parameterswill make it possible tomake an appropriate choice of components for the control systems of the rail grinding drive and working equipment. The results of research on the technology of high-speed grinding of rails allow us to draw the following conclusions: 1. The tests carried out confirmed the fulfillment of the requirements of the technical specification for the rail grinding train RSHP 2.0 in terms of efficiency. The average thickness of the rail metal layer removing in one pass at maximum grinding power should be: ● 0.3 mm at an operating speed of 10 km/h; ● 0.2 mm at the operating speed of the RSHP – 15 km/h. 2. The possible range of the formed roughness of the processed surface of the rails is determined depending on the grinding modes and the angle of inclination of the grinding head. The possible values of the formed roughness according to Ra are 3.1–5.9 µm, which meets the requirements of the regulatory documentation on the maintenance of rails. 3. The permissible values of grinding modes are determined, taking into account the exclusion of the occurrence of cauterization on the processed surface of the rail. The presence of cauterization is typical when removing metal with a thickness of more than 0.35 mm, at speeds of movement of the grinding trolley up to 15 km/h. References 1. Fan W., Liu Y., Li J. Development status and prospect of rail grinding technology for high speed railway. Journal of Mechanical Engineering, 2018, vol. 54, iss. 22, pp. 184–193. DOI: 10.3901/JME.2018.22.184. 2. Schoch W. Grinding of rails on high-speed railway lines: a matter of great importance. Rail Engineering International, 2007, vol. 36, iss. 1, pp. 6–8. 3. Funke H. Rail grinding. Berlin, Transpress, 1986. 153 p. 4. Cuervo P., Santa J., ToroA. Correlations between wear mechanisms and rail grinding operations in a commercial railroad. Tribology International, 2015, vol. 2, pp. 265–273. DOI: 10.1016/j.triboint.2014.06.025. 5. Krishna V., Hossein-Nia S., Casanueva C., Stichel S. Long term rail surface damage considering maintenance interventions. Wear, 2020, vol. 460–461, p. 203462. DOI: 10.1016/j.wear.2020.203462. 6. Ding J., Lewis R., Beagles A., Wang J. Application of grinding to reduce rail side wear in straight track. Wear, 2018, vol. 402–403, p. 71–79. DOI: 10.1016/j.wear.2018.02.001. 7. Ilinykh A., Matafonov A., Yurkova E. Efficiency of the production process of grinding rails on the basis of optimizing the periodicity of works. Advances in Intelligent Systems and Computing, 2019, vol. 1116, pp. 672–681. DOI: 10.1007/978-3-030-37919-3_67. 8. Ilyinykh A.S. Skorostnoe shlifovanie rel’sov v puti [Speed rail grinding]. Mir transporta = World of Transport and Transportation, 2011, no. 3, pp. 56–61. 9. Ilinykh A.S., Pikalov A.S., Galay M.S., Miloradovich V.K. Povyshenie proizvoditel’nosti rel’soshlifoval’nykh poezdov metodom skorostnogo shlifovaniya [Increasing the performance of rail grinding trains by the method of speed grinding]. Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Tekhnicheskie nauki = University News. North-Caucasian Region. Technical Sciences Series, 2022, no. 4 (216), pp. 46–56. DOI: 10.17213/15603644202244656. 10. Doman D., Warkentin A., Bauer R. A survey of recent grinding wheel topography models. International Journal of Machine Tools &Manufacture, 2006, vol. 46, iss. 3, pp. 343–352. DOI: 10.1016/j.ijmachtools.2005.05.013. 11. ZengaW., Lib Z., Peib Z., Treadwell C. Experimental observation of tool wear in rotary ultrasonic machining of advanced ceramics. International Journal of Machine Tools & Manufacture, 2005, vol. 45, iss. 12–13, pp. 1468–1473. 12. JeongW., Shin J. Grinding effect analysis according to control variables of compact rail surface grindingmachine. Journal of the Korean Society for Railway, 2020, vol. 23, iss. 7, pp. 688–695. DOI: 10.7782/JKSR.2020.23.7.688. 13. Koshin A.A., Chaplygin B.A., Isakov D.V. Adequacy of the operating conditions of abrasive grains. Russian Engineering Research, 2011, vol. 31, no. 12, pp. 1221–1226. 14. AksenovV.A., IlinykhA.S., GalayM.S. MatafonovA.V. Osobennosti formirovaniya tekhnologicheskogo protsessa ploskogo shlifovaniya tortsom kruga pri uprugoi podveske shlifoval’noi golovki [Features of formation of the flat grinding

RkJQdWJsaXNoZXIy MTk0ODM1