The concept of microsimulation of processes of joining dissimilar materials by plastic deformation

OBRABOTKAMETALLOV technology Vol. 25 No. 3 2023 Comparison of the parameters showed noticeable discrepancies at the stage I and stage II of joint deformation, which is associated with close values of strain resistances of the materials to be bonded and the deviation of the actual surface profiles from the idealized ones. Despite this, after the onset of the critical stage III, further joint deformation proceeds in accordance with the proposed theoretical mechanism: unfilled sections of cavities remain at the interface between the materials, and plastic deformation begins to propagate deep into the bulk of both materials. As the work hardening of both materials increases and the pressure at the interlayer boundary increases, the cavities on the alloy surface are filled up. Thus, FE modeling of joint deformation on a microscale made it possible to identify the limits of application of the theoretical mechanism, discrepancies in the case of joint deformation of materials with similar values of strain resistance, and directions for further improvement. The theoretical model is recommended to be used to analyze the processes of joint deformation of materials with a greater difference in strain resistance. When studying the processes of deformation of materials with similar values of strain resistance, the model adequately reflects the sequence after the onset of the critical stage, namely, at the moment of the onset of propagation of plastic deformation deep into the bulk of materials. To expand the boundaries of using the theoretical model, it is recommended to consider the problem of plastic crumpling of the asperities. References 1. Groche P., Wohletz S., Brenneis M., Pabst C., Resch F. Joining by forming – A review on joint mechanisms, applications and future trends. Journal of Materials Processing Technology, 2014, vol. 214, pp. 1972–1994. DOI: 10.1016/j.jmatprotec.2013.12.022. 2. MoriK.-I., BayN., Fratini L.,Micari F.,TekkayaA.E. Joiningbyplasticdeformation. CIRPAnnals –Manufacturing Technology, 2013, vol. 62, pp. 673–694. DOI: 10.1016/j.cirp.2013.05.004. 3. Jamaati R., Toroghinejad M.R. Cold roll bonding bond strengths: review. Materials Science and Technology, 2011, vol. 27, iss. 7, pp. 1101–1108. DOI: 10.1179/026708310X12815992418256. 4. Li L., Nagai K., Yin F. Progress in cold roll bonding of metals. Science and Technology of Advanced Materials, 2008, vol. 9, p. 023001. DOI: 10.1088/1468-6996/9/2/023001. 5. Rezayat M., Akbarzadeh A. Bonding behavior of Al–Al2O3 laminations during roll bonding process. Materials and Design, 2012, vol. 36, pp. 874–879. DOI: 10.1016/j.matdes.2011.08.048. 6. Tang C., Liu Z., Zhou D. Surface treatment with the cold roll bonding process for an aluminum alloy and mild steel. Strength of Materials, 2015, vol. 47, iss. 1, pp. 150–155. DOI: 10.1007/s11223-015-9641-3. 7. Arbo S.M., Westermann I., Holmedal B. Influence of stacking sequence and intermediate layer thickness in AA6082-IF steel tri-layered cold roll bonded composite sheets. Key Engineering Materials, 2018, vol. 767, pp. 316– 322. DOI: 10.4028/www.scientific.net/KEM.767.316. 8. Gao C., Li L., Chen X., Zhou D., Tang C. The effect of surface preparation on the bond strength of Al-St strips in CRB process. Materials and Design, 2016, vol. 107, pp. 205–211. DOI: 10.1016/j.matdes.2016.05.112. 9. Akdesir M., Zhou D., Foadian F., Palkowski H. Study of different surface pre-treatment methods on bonding strength of multilayer aluminum alloys/steel clad material. International Journal of Engineering Research & Science, 2016, vol. 2, iss. 1, pp. 169–177. 10. Bagheri A., Toroghinejad M.R., Taherizadeh A. Effect of roughness and surface hardening on the mechanical properties of three-layered brass/IF steel/brass composite. Transactions of the Indian Institute of Metals, 2018, vol. 71, iss. 9, pp. 2199–2210. DOI: 10.1007/s12666-018-1351-7. 11. Liu J., Li M., Sheu S., Karabin M.E., Schultz R.W. Macro- and micro-surface engineering to improve hot roll bonding of aluminum plate and sheet. Materials Science and Engineering A, 2008, vol. 479, pp. 45–57. DOI: 10.1016/j. msea.2007.06.022. 12. Mikloweit A., Bambach M., Pietryga M., Hirt G. Development of a testing procedure to determine the bond strength in joining-by-formingprocesses. AdvancedMaterialsResearch, 2014, vol. 966–967, pp. 481–488. DOI: 10.4028/ www.scientific.net/AMR.966-967.481. 13. Wang A., Ohashi O., Ueno K. Effect of surface asperity on diffusion bonding. Materials Transactions, 2006, vol. 47, iss. 1, pp. 179–184. DOI: 10.2320/matertrans.47.179. 14. Zhang Ch., Li H., Li M. Role of surface finish on interface grain boundary migration in vacuum diffusion bonding. Vacuum, 2017, vol. 137, pp. 49–55. DOI: 10.1016/j.vacuum.2016.12.021.

RkJQdWJsaXNoZXIy MTk0ODM1