Rationalization of modes of HFC hardening of working surfaces of a plug in the conditions of hybrid processing

OBRABOTKAMETALLOV Vol. 25 No. 3 2023 82 EQUIPMENT. INSTRUMENTS 19. Sun S., Brandt M., Dargusch M.S. Thermally enhanced machining of hard-to-machine materials – A review. International Journal of Machine Tools and Manufacture, 2010, vol. 50, iss. 8, pp. 663–680. DOI: 10.1016/j. ijmachtools.2010.04.008. 20. You K., Yan G., Luo X., Gilchrist M.D., Fang F. Advances in laser assisted machining of hard and brittle materials. Journal of Manufacturing Processes, 2020, vol. 58, pp. 677–692. DOI: 10.1016/j.jmapro.2020.08.034. 21. Skeeba V., Pushnin V., Erohin I., Kornev D. Integration of production steps on a single equipment. Materials and Manufacturing Processes, 2015, vol. 30, iss. 12. DOI: 10.1080/10426914.2014.973595 22. Borisov M.A., Lobanov D.V., Yanyushkin A.S. Gibridnaya tekhnologiya elektrokhimicheskoi obrabotki slozhnoprofi l’nykh izdelii [Hybrid technology of electrochemical processing of complex profi les]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2019, vol. 21, no. 1, pp. 25–34. DOI: 10.17212/1994-6309-2019-21.1-25-34. 23. Hügel H., Wiedmaier M., Rudlaff T. Laser processing integrated into machine tools – design, applications, economy. Optical and Quantum Electronics, 1995, vol. 27, iss. 12, pp. 1149–1164. DOI: 10.1007/BF00326472. 24. Madhavulu G., Ahmed B. Hot Machining Process for improved metal removal rates in turning operations. Journal of Materials Processing Technology, 1994, vol. 44, pp. 199–206. DOI: 10.1016/0924-0136(94)90432-4. 25. Wu C., Zhang T., Guo W., Meng X., Ding Z., Liang S.Y. Laser-assisted grinding of silicon nitride ceramics: Micro-groove preparation and removal mechanism. Ceramics International, 2022, vol. 48, iss. 21, pp. 32366–32379. DOI: 10.1016/j.ceramint.2022.07.180. 26. Rao T.B. Reliability analysis of the cutting tool in plasma-assisted turning and prediction of machining characteristics. Australian Journal of Mechanical Engineering, 2020, vol. 20, pp. 1020–1034. DOI: 10.1080/14484 846.2020.1769458. 27. Olsson M., Akujärvi V., Ståhl J.-E., Bushlya V. Cryogenic and hybrid induction-assisted machining strategies as alternatives for conventional machining of refractory tungsten and niobium. International Journal of Refractory Metals and Hard Materials, 2021, vol. 97, p. 105520. DOI: 10.1016/j.ijrmhm.2021.105520. 28. Boivie K., Karlsen R., Ystgaard P. The concept of hybrid manufacturing for high performance parts. South African Journal of Industrial Engineering, 2012, vol. 23, iss. 2, pp. 106–115. 29. Kim S.-G., Lee C.-M., KimD.-H. Plasma-assisted machining characteristics of wire arc additive manufactured stainless steel with diff erent deposition directions. Journal of Materials Research and Technology, 2021, vol. 15, pp. 3016–3027. DOI: 10.1016/j.jmrt.2021.09.130. 30. Lee Y.-H., Lee C.-M. A study on optimal machining conditions and energy effi ciency in plasma assisted machining of Ti-6Al-4V. Materials, 2019, vol. 12, p. 2590. DOI: 10.3390/ma12162590. 31. Liao Z., Xu D., Luna G.G., Axinte D., Augustinavicius G., Sarasua J.A., Wretland A. Infl uence of surface integrity induced by multiple machining processes upon the fatigue performance of a nickel based superalloy. Journal of Materials Processing Technology, 2021, vol. 298, p. 117313. DOI: 10.1016/j.jmatprotec.2021.117313. 32. Lee C.M., Kim D.H., Baek J.T., Kim E.-J. Laser assisted milling device: A review. International Journal of Precision Engineering and Manufacturing – Green Technology, 2016, vol. 3, iss. 2, pp. 199–208. DOI: 10.1007/ s40684-016-0027-1. 33. Wiedenmann R., Zaeh M.F. Laser-assisted milling – Process modeling and experimental validation. CIRP Journal of Manufacturing Science and Technology, 2015, vol. 8, pp. 70–77. DOI: 10.1016/j.cirpj.2014.08.003. 34. LඬpezdeLacalleL.N., Sánchez J.A.,LamikizA.,CelayaA. Plasmaassistedmillingof heat-resistant superalloys. Journal of Manufacturing Science and Engineering, 2004, vol. 126, iss. 2, pp. 274–285. DOI: 10.1115/1.1644548. 35. Baek J.-T., Woo W.-S., Lee C.-M. A study on the machining characteristics of induction and laser-induction assisted machining of AISI 1045 steel and Inconel 718. Journal of Manufacturing Processes, 2018, vol. 34, pt. A, pp. 513–522. DOI: 10.1016/j.jmapro.2018.06.030. 36. Guerrini G., Lutey A.H.A., Melkote S.N., Fortunato A. High throughput hybrid laser assisted machining of sintered reaction bonded silicon nitride. Journal of Materials Processing Technology, 2018, vol. 252, pp. 628–635. DOI: 10.1016/j.jmatprotec.2017.10.019. 37. Liu J., Li Y., Chen Y., Zhou Y., Wang S., Yuan Z., Jin Zh., Liu X. A review of low-temperature plasmaassisted machining: from mechanism to application. Frontiers of Mechanical Engineering, 2023, vol. 18, iss. 1, p. 18. DOI: 10.1007/s11465-022-0734-y. 38. Anderson M.C., Shin Y.C. Laser-assisted machining of an austenitic stainless steel: P550. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2006, vol. 220, iss. 12, pp. 2055– 2067. DOI: 10.1243/09544054JEM562.

RkJQdWJsaXNoZXIy MTk0ODM1