Rationalization of modes of HFC hardening of working surfaces of a plug in the conditions of hybrid processing

OBRABOTKAMETALLOV Vol. 25 No. 3 2023 84 EQUIPMENT. INSTRUMENTS 58. KimE.-J., Lee C.-M. Experimental study on power consumption of laser and induction assistedmachining with Inconel 718. Journal of Manufacturing Processes, 2020, vol. 59, pp. 411–420. – DOI: 10.1016/j.jmapro.2020.09.064. 59. Ma Z., Wang Z., Wang X., Yu T. Eff ects of laser-assisted grinding on surface integrity of zirconia ceramic. Ceramics International, 2020, vol. 46, iss. 1, pp. 921–929. DOI: 10.1016/j.ceramint.2019.09.051. 60. Choi Y.H., Lee C.M. A study on the machining characteristics of AISI 1045 steel and Inconel 718 with circular cone shape in induction assisted machining. Journal of Manufacturing Processes, 2018, vol. 34, pp. 463– 476. DOI: 10.1016/j.jmapro.2018.06.023. 61. Skeeba V.Yu., Ivancivsky V.V., Martyushev N.V. Peculiarities of high-energy induction heating during surface hardening in hybrid processing conditions. Metals, 2021, vol. 11, iss. 9, p. 1354. DOI: 10.3390/met11091354. 62. Kim E.J., Lee C.M. A study on the optimal machining parameters of the induction assisted milling with Inconel 718. Materials, 2019, vol. 12, iss. 2, p. 233. DOI: 10.3390/ma12020233. 63. Xu D., Liao Z., Axinte D., Sarasua J.A., M’Saoubi R., Wretland A. Investigation of surface integrity in laser-assisted machining of nickel based superalloy. Materials & Design, 2020, vol. 194, p. 108851. DOI: 10.1016/j. matdes.2020.108851. 64. Kim J.-H., Kim E.-J., Lee C.-M. A study on the heat aff ected zone and machining characteristics of diffi cultto-cut materials in laser and induction assisted machining. Journal of Manufacturing Processes, 2020, vol. 57, pp. 499–508. DOI: 10.1016/j.jmapro.2020.07. 65. Ha J.-H., Lee C.-M. A study on the thermal eff ect by multi heat sources and machining characteristics of laser and induction assisted milling. Materials, 2019, vol. 12, iss. 7, p. 1032. DOI: 10.3390/ma12071032. 66. Woo W.S., Lee C.M. A study on the optimum machining conditions and energy effi ciency of a laser-assisted fi llet milling. International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, vol. 5, iss. 5, pp. 593–604. DOI: 10.1007/s40684-018-0061-2. 67. Zaeh M.F., Wiedenmann R., Daub R. A thermal simulation model for laser-assisted milling. Physics Procedia, 2010, vol. 5, pp. 353–362. DOI: 10.1016/j.phpro.2010.08.062. 68. Brecher C., Emonts M., Rosen C.-J., Hermani J.-P. Laser-assisted milling of advanced materials. Physics Procedia, 2011, vol. 12, pp. 599–606. DOI: 10.1016/j.phpro.2011.03.076. 69. Venkatesan K., Ramanujam R., Kuppan P. Laser assisted machining of diffi cult to cut materials: research opportunities and future directions – A comprehensive review. Procedia Engineering, 2014, vol. 97, pp. 1626–1636. DOI: 10.1016/j.proeng.2014.12.313. 70. Kim I.-W., Lee C.-M. A study on the machining characteristics of specimens with spherical shape using laser-assisted machining. Applied Thermal Engineering, 2016, vol. 100, pp. 636–645. DOI: 10.1016/j. applthermaleng.2016.02.005. 71. Skeeba V.Yu., Ivancivsky V.V., Vakhrushev N.V., Parts K.A., Cha G.O. Effi ciency of hybrid equipment combining operations of surface hardening by high frequency currents and abrasive grinding. IOP Conference Series: Earth and Environmental Science, 2018, vol. 194, iss. 2. p. 022038. DOI: 10.1088/1755-1315/194/2/022038. 72. Skeeba V.Yu., Ivancivsky V.V., Lobanov D.V., Zhigulev A.K., Skeeba P.Yu. Integrated processing: quality assurance procedure of the surface layer of machine parts during the manufacturing step “diamond smoothing”. IOP Conference Series: Materials Science and Engineering, 2015, vol. 25, p. 012031. DOI: 10.1088/1757899X/125/1/012031. 73. Skeeba V.Yu. Povyshenie eff ektivnosti tekhnologicheskogo protsessa obrabotki detalei mashin, pri integratsii abrazivnogo shlifovaniya i poverkhnostnoi zakalki TVCh. Diss. kand. tekhn. nauk [Improving the effi ciency of the technological processing machinery parts with the integration of abrasive grinding and surface hardening currents by high frequency currents. PhD eng. sci. diss.]. Novosibirsk, 2008. 257 p. 74. Ivancivsky V.V. Upravlenie strukturnym i napryazhennym sostoyaniem poverkhnostnykh sloev detalei mashin pri ikh uprochnenii s ispol’zovaniem kontsentrirovannykh istochnikov nagreva i fi nishnogo shlifovaniya. Diss. dokt. tekhn. nauk [Control of structural and stress state of the surface layers of machine parts during their hardening using concentrated sources of heat and abrasive fi nishing. Dr. eng. sci. diss.]. Novosibirsk, 2012. 425 p. 75. Ivancivsky V.V., Skeeba V.Yu. Eff ektivnost’ ob”edineniya operatsii poverkhnostnoi zakalki i shlifovaniya na odnom tekhnologicheskom oborudovanii [Integration eff ectiveness of operations of surface hardening and grinding on a single technology equipment]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2010, no. 4, pp. 15–21. 76. Gao K., Qin X. Eff ect of feed path on the spot continual induction hardening for diff erent curved surfaces of AISI 1045 steel. International Communications in Heat and Mass Transfer, 2020, vol. 115, p. 104632. DOI: 10.1016/j. icheatmasstransfer.2020.104632.

RkJQdWJsaXNoZXIy MTk0ODM1