Rationalization of modes of HFC hardening of working surfaces of a plug in the conditions of hybrid processing

OBRABOTKAMETALLOV Vol. 25 No. 3 2023 85 EQUIPMENT. INSTRUMENTS 77. Javaheri V., Haiko O., Sadeghpour S., Valtonen K., Kömi J., Porter D. On the role of grain size on slurry erosion behavior of a novel medium-carbon, low-alloy pipeline steel after induction hardening. Wear, 2021, vol. 476, p. 203678. DOI: 10.1016/j.wear.2021.203678. 78. Asadzadeh M.Z., Raninger P., Prevedel P., Ecker W., Mücke M. Hybrid modeling of induction hardening processes. Applications in Engineering Science, 2021, vol. 5, p. 100030. DOI: 10.1016/j.apples.2020.100030. 79. Areitioaurtena M., Segurajauregi U., Urresti I., Fisk M., Ukar E. Predicting the induction hardened case in 42CrMo4 cylinder. Procedia CIRP, 2020, vol. 87, pp. 545–550. DOI: 10.1016/j.procir.2020.02.034. 80. Hammouma C., Zeroug H. Enhanced frequency adaptation approaches for series resonant inverter control under workpiece permeability eff ect for induction hardening applications. Engineering Science and Technology, 2021. DOI: 10.1016/j.jestch.2021.05.010. 81. Li F., Li X., Wang T., Rong Y.(K.), Liang S.Y. In-process residual stresses regulation during grinding through induction heating with magnetic fl ux concentrator. International Journal of Mechanical Sciences, 2020, vol. 172, p. 105393. DOI: 10.1016/j.ijmecsci.2019.105393. 82. Skeeba V.Yu., Zverev E.A., Skeeba P.Yu., Chernikov A.D., Popkov A.S. Gibridnoe tekhnologicheskoe oborudovanie: k voprosu ratsional’nogo vybora ob”ektov modernizatsii pri provedenii rabot, svyazannykh s doosnashcheniem standartnoi stanochnoi sistemy dopolnitel’nym kontsentrirovannym istochnikom energii [Hybrid technological equipment: on the issue of a rational choice of objects of modernization when carrying out work related to retrofi tting a standard machine tool system with an additional concentrated energy source]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2023, vol. 25, no. 2, pp. 45–67. DOI: 10.17212/1994-6309-2023-25.2-45-67. 83. Ivancivsky V.V., Skeeba V.Yu., Pushnin V.N. Metodika naznacheniya rezhimov obrabotki pri sovmeshchenii operatsii abrazivnogo shlifovaniya i poverkhnostnoi zakalki TVCh [Methods of appointment processing conditions when combining the operations of abrasive grinding and surface induction hardening]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2011, no. 4, pp. 19–25. 84. Kazantsev M.E. Postroenie strukturnykh skhem stankov i nastroiki ispolnitel’nykh dvizhenii [Construction of block diagrams of machine tools and adjustment of executive movements]. Novosibirsk, NSTU Publ., 1997. 54 p. 85. Ptitsyn S.V., Levitskii L.V. Strukturnyi analiz i sintez kinematiki metallorezhushchikh stankov [Structural analysis and kinematics synthesis of machine tools]. Kiev, UMK Publ., 1989. 70 p. 86. Fedotenok A.A. Kinematicheskaya struktura metallorezhushchikh stankov [Kinematic structure of machine tools]. Moscow, Mashinostroenie Publ., 1970. 408 p. 87. Skeeba V.Yu., Ivantsivsky V.V., Nos O.V., Zverev E.A., Martynova T.G., Vakhrushev N.V., Vanag Yu.V., Titova K.A., Cha G.O., Skiba P.Yu. Povyshenie eff ektivnosti proektirovaniya gibridnogo metalloobrabatyvayushchego oborudovaniya, ob”edinyayushchego mekhanicheskuyu i poverkhnostno-termicheskuyu operatsii [Improving the effi ciency of the conceptual design of the integrated metal-cutting equipment, combining mechanical and surface thermal operation]. Report on the research work of the project N 9.11829.2018/11.12. State registration no. АААА-Б19-219020690026-1, 2018. 197 p. 88. Vragov Yu.D. Analiz komponovok metallorezhushchikh stankov (Osnovy komponetiki) [Analysis of the layout of machine tools. The basics of compositing]. Moscow, Mashinostroenie Publ., 1978. 208 p. 89. Ivakhnenko A.G. Povyshenie eff ektivnosti rannikh stadii proektirovaniya metallorezhushchikh stankov na osnove strukturnogo sinteza formoobrazuyushchikh sistem. Diss. dokt. tekhn. nauk [Improving the effi ciency of the early stages of designing machine tools based on the structural synthesis of shaping systems. Dr. eng. sci. diss.]. Moscow, 1998. 244 p. 90. IvakhnenkoA.G. Kontseptual’noe proektirovanie metallorezhushchikh sistem. Strukturnyi sintez [Conceptual design of metal-cutting systems. Structural synthesis]. Khabarovsk, KhGTU Publ., 1998. 124 p. 91. Nakaminami M., Tokuma T., Matsumoto K., Sakashita S., Moriwaki T., Nakamoto K. Optimal structure design methodology for compound multiaxis machine tools – II – Investigation of basic structure. International Journal of Automation Technology, 2007, vol. 1, no. 2, pp. 87–93. DOI: 10.20965/ijat.2007.p0087. 92. Nakaminami M., Tokuma T., Moriwaki M., Nakamoto К. Optimal structure design methodology for compound multiaxis machine tools – I –Analysis of requirements and specifi cations. International Journal of Automation Technology, 2007, vol. 1, no. 2, pp. 78–86. DOI: 10.20965/ijat.2007.p0078. 93. Mekid S., ed. Introduction to precision machine design and error assessment. Mechanical and Aerospace Engineering Series. Boca Raton, CRC Press, 2008. 302 p. ISBN 0849378869. ISBN 978-0849378867. 94. Ivakhnenko A.G., Kuts V.V. Strukturno-parametricheskii sintez tekhnologicheskikh sistem [Structural-parametric synthesis of technological systems]. Kursk, КurskSTU Publ., 2010. 151 p.

RkJQdWJsaXNoZXIy MTk0ODM1