Rationalization of modes of HFC hardening of working surfaces of a plug in the conditions of hybrid processing

OBRABOTKAMETALLOV Vol. 23 No. 3 2021 MATERIAL SCIENCE EQUIPMENT. INSTRUMENTS 5 3 33. Wiedenmann R., Zaeh M.F. Laser-assisted milling – Process modeling and experimental validation. CIRP Journal of Manufacturing Science and Technology, 2015, vol. 8, pp. 70–77. DOI: 10.1016/j.cirpj.2014.08.003. 34. LÓpezdeLacalleL.N., SánchezJ.A.,LamikizA.,CelayaA. Plasmaassistedmillingofheat-resistant superalloys. Journal of Manufacturing Science and Engineering, 2004, vol. 126, iss. 2, pp. 274–285. DOI: 10.1115/1.1644548. 35. Baek J.-T., Woo W.-S., Lee C.-M. A study on the machining characteristics of induction and laser-induction assisted machining of AISI 1045 steel and Inconel 718. Journal of Manufacturing Processes, 2018, vol. 34, pt. A, pp. 513–522. DOI: 10.1016/j.jmapro.2018.06.030. 36. Guerrini G., Lutey A.H.A., Melkote S.N., Fortunato A. High throughput hybrid laser assisted machining of sintered reaction bonded silicon nitride. Journal of Materials Processing Technology, 2018, vol. 252, pp. 628–635. DOI: 10.1016/j.jmatprotec.2017.10.019. 37. Liu J., Li Y., Chen Y., Zhou Y., Wang S., Yuan Z., Jin Zh., Liu X. A review of low-temperature plasmaassisted machining: from mechanism to application. Frontiers of Mechanical Engineering, 2023, vol. 18, iss. 1, p. 18. DOI: 10.1007/s11465-022-0734-y. 38. Anderson M.C., Shin Y.C. Laser-assisted machining of an austenitic stainless steel: P550. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2006, vol. 220, iss. 12, pp. 2055– 2067. DOI: 10.1243/09544054JEM562. 39. Widłaszewski J., Nowak M., Nowak Z., Kurp P. Curvature change in laser-assisted bending of Inconel 718. Physical Sciences Forum, 2022, vol. 4. iss. 1, p. 26. DOI: 10.3390/psf2022004026. 40. Sun S., Harris J., Brandt M. Parametric investigation of laser-assisted machining of commercially pure titanium. Advances Engineering Materials, 2008, vol 10, iss. 6, pp. 565–572. DOI: 10.1002/adem.200700349. 41. Mohammadi H., Patten J.A. Laser augmented diamond drilling: a new technique to drill hard and brittle materials. Procedia Manufacturing, 2016, vol. 5, pp. 1337–1347. DOI: 10.1016/j.promfg.2016.08.104. 42. Venkatesan K. The study on force, surface integrity, tool life and chip on laser assistedmachining of Inconel 718 using Nd:YAG laser source. Journal of Advanced Research, 2017, vol. 8, iss. 4, pp. 407–423. DOI: 10.1016/j. jare.2017.05.004. 43. Bermingham M.J., Kent D., Dargusch M.S. A new understanding of the wear processes during laser assisted milling 17-4 precipitation hardened stainless steel. Wear, 2015, vol. 328–329, pp. 518–530. DOI: 10.1016/j. wear.2015.03.025. 44. Ul Hasan S., Ali S., Jaffery S.H.I., Ud Din E., Mubashir A., Khan M. Study of burr width and height using ANOVA in laser hybrid micro milling of titanium alloy (Ti6Al4V). Journal of Materials Research and Technology, 2022, vol. 21, pp. 4398–4408. DOI: 10.1016/j.jmrt.2022.11.051. 45. Ding H., Shen N., Shin Y.C. Thermal and mechanical modeling analysis of laser-assisted micro-milling of difficult-to-machine alloys. Journal of Materials Processing Technology, 2012, vol. 212, iss. 3, pp. 601–613. DOI: 10.1016/j.jmatprotec.2011.07.016. 46. Gurabvaiah Punugupati, Kishore Kumar Kandi, Bose P.S.C., Rao C.S.P. Laser assisted machining: a state of art review. IOP Conference Series: Materials Science and Engineering, 2016, vol. 149, p. 012014. DOI: 10.1088/1757899X/149/1/012014. 47. SkeebaV.Yu., IvantsivskyV.V. Gibridnoemetalloobrabatyvayushchee oborudovanie: povyshenie effektivnosti tekhnologicheskogo protsessa obrabotki detalei pri integratsii poverkhnostnoi zakalki i abrazivnogo shlifovaniya [Hybrid metal working equipment: improving the effectiveness of the details processing under the integration of surface quenching and abrasive grinding]. Novosibirsk, NSTU Publ., 2018. 312 p. ISBN 978-5-77823690-5. 48. Lobanov D.V., Arkhipov P.V., Yanyushkin A.S., Skeeba V.Yu. Research of influence electric conditions combined electrodiamond processing by on specific consumption of wheel. IOP Conference Series: Materials Science and Engineering, 2016, vol. 142, p. 012081. DOI: 10.1088/1757-899X/142/1/012081. 49. Salonitis K., Chondros T., Chryssolouris G. Grinding wheel effect in the grind-hardening process // The International Journal of Advanced Manufacturing Technology, 2008, vol. 38, iss. 1–2, рр. 48–58. DOI: 10.1007/ s00170-007-1078-9. 50. Ding H.T., Shin Y.C. Laser-assisted machining of hardened steel parts with surface integrity analysis. International Journal of Machine Tools and Manufacture, 2010, vol. 50, iss. 1, pp. 106–114. DOI: 10.1016/j. ijmachtools.2009.09.001. 51. Jeon Y., Lee C.M. Current research trend on laser assisted machining. International Journal of Precision Engineering and Manufacturing, 2012, vol. 13, iss. 2, pp. 311–317. DOI: 10.1007/s12541-012-0040-4. 52. Ahn J.W., Woo W.S., Lee C.M. A study on the energy efficiency of specific cutting energy in laser-assisted machining. Applied Thermal Engineering, 2016, vol. 94, pp. 748–753. DOI: 10.1016/j.applthermaleng.2015.10.129.

RkJQdWJsaXNoZXIy MTk0ODM1