Rationalization of modes of HFC hardening of working surfaces of a plug in the conditions of hybrid processing

OBRABOTKAMETALLOV MATERIAL SCIENCE Том 23 № 3 2021 EQUIPMEN . INSTRUM TS Vol. 5 No. 3 2023 53. Kim J., Zani L., Abdul-Kadir A., Roy A., Baxevanakis K.P., Jones L.C.R., Silberschmidt V.V. Hybridhybrid turning of micro-SiCp/AA2124 composites: A comparative study of laser-and-ultrasonic vibration-assisted machining. Journal of Manufacturing Processes, 2023, vol. 86, pp. 109–125. DOI: 10.1016/j.jmapro.2022.12.045. 54. Lv B., Lin B., Cao Z., Liu W., Wang G. Numerical simulation and experimental investigation of structured surface generated by 3D vibration-assisted milling. Journal of Manufacturing Processes, 2023, vol. 89, pp. 371–383. DOI: 10.1016/j.jmapro.2023.01.010. 55. Witte J., Huebler D., Schroepfer D., Boerner A., Kannengiesser T. Wear behavior of innovative niobium carbide cutting tools in ultrasonic-assisted finishing milling. Wear, 2023, vol. 522, p. 204722. DOI: 10.1016/j. wear.2023.204722. 56. XuM., Wei R., Li C., Ko T.J. High-frequency electrical discharge assisted milling of Inconel 718 under copperberyllium bundle electrodes. Journal of Manufacturing Processes, 2023, vol. 85, pp. 1116–1132. DOI: 10.1016/j. jmapro.2022.12.026. 57. Dumitrescu P., Koshy P., Stenekes J., Elbestawi M.A. High-power diode laser assisted hard turning of AISI D2 tool steel. International Journal of Machine Tools and Manufacture, 2016, vol. 46, iss. 15, pp. 2009–2016. DOI: 10.1016/j.ijmachtools.2006.01.005. 58. KimE.-J., Lee C.-M. Experimental study on power consumption of laser and induction assistedmachining with Inconel 718. Journal of Manufacturing Processes, 2020, vol. 59, pp. 411–420. – DOI: 10.1016/j.jmapro.2020.09.064. 59. Ma Z., Wang Z., Wang X., Yu T. Effects of laser-assisted grinding on surface integrity of zirconia ceramic. Ceramics International, 2020, vol. 46, iss. 1, pp. 921–929. DOI: 10.1016/j.ceramint.2019.09.051. 60. Choi Y.H., Lee C.M. A study on the machining characteristics of AISI 1045 steel and Inconel 718 with circular cone shape in induction assisted machining. Journal of Manufacturing Processes, 2018, vol. 34, pp. 463– 476. DOI: 10.1016/j.jmapro.2018.06.023. 61. Skeeba V.Yu., Ivancivsky V.V., Martyushev N.V. Peculiarities of high-energy induction heating during surface hardening in hybrid processing conditions. Metals, 2021, vol. 11, iss. 9, p. 1354. DOI: 10.3390/met11091354. 62. Kim E.J., Lee C.M. A study on the optimal machining parameters of the induction assisted milling with Inconel 718. Materials, 2019, vol. 12, iss. 2, p. 233. DOI: 10.3390/ma12020233. 63. Xu D., Liao Z., Axinte D., Sarasua J.A., M’Saoubi R., Wretland A. Investigation of surface integrity in laser-assisted machining of nickel based superalloy. Materials & Design, 2020, vol. 194, p. 108851. DOI: 10.1016/j. matdes.2020.108851. 64. Kim J.-H., Kim E.-J., Lee C.-M. A study on the heat affected zone and machining characteristics of difficultto-cut materials in laser and induction assisted machining. Journal of Manufacturing Processes, 2020, vol. 57, pp. 499–508. DOI: 10.1016/j.jmapro.2020.07. 65. Ha J.-H., Lee C.-M. A study on the thermal effect by multi heat sources and machining characteristics of laser and induction assisted milling. Materials, 2019, vol. 12, iss. 7, p. 1032. DOI: 10.3390/ma12071032. 66. Woo W.S., Lee C.M. A study on the optimum machining conditions and energy efficiency of a laser-assisted fillet milling. International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, vol. 5, iss. 5, pp. 593–604. DOI: 10.1007/s40684-018-0061-2. 67. Zaeh M.F., Wiedenmann R., Daub R. A thermal simulation model for laser-assisted milling. Physics Procedia, 2010, vol. 5, pp. 353–362. DOI: 10.1016/j.phpro.2010.08.062. 68. Brecher C., Emonts M., Rosen C.-J., Hermani J.-P. Laser-assisted milling of advanced materials. Physics Procedia, 2011, vol. 12, pp. 599–606. DOI: 10.1016/j.phpro.2011.03.076. 69. Venkatesan K., Ramanujam R., Kuppan P. Laser assisted machining of difficult to cut materials: research opportunities and future directions – A comprehensive review. Procedia Engineering, 2014, vol. 97, pp. 1626–1636. DOI: 10.1016/j.proeng.2014.12.313. 70. Kim I.-W., Lee C.-M. A study on the machining characteristics of specimens with spherical shape using laser-assisted machining. Applied Thermal Engineering, 2016, vol. 100, pp. 636–645. DOI: 10.1016/j. applthermaleng.2016.02.005. 71. Skeeba V.Yu., Ivancivsky V.V., Vakhrushev N.V., Parts K.A., Cha G.O. Efficiency of hybrid equipment combining operations of surface hardening by high frequency currents and abrasive grinding. IOP Conference Series: Earth and Environmental Science, 2018, vol. 194, iss. 2. p. 022038. DOI: 10.1088/1755-1315/194/2/022038. 72. Skeeba V.Yu., Ivancivsky V.V., Lobanov D.V., Zhigulev A.K., Skeeba P.Yu. Integrated processing: quality assurance procedure of the surface layer of machine parts during the manufacturing step “diamond smoothing”. IOP Conference Series: Materials Science and Engineering, 2015, vol. 25, p. 012031. DOI: 10.1088/1757899X/125/1/012031.

RkJQdWJsaXNoZXIy MTk0ODM1