Rationalization of modes of HFC hardening of working surfaces of a plug in the conditions of hybrid processing

OBRABOTKAMETALLOV Vol. 23 No. 3 2021 MATERIAL SCIENCE EQUIPMENT. INSTRUMENTS 5 3 73. Skeeba V.Yu. Povyshenie effektivnosti tekhnologicheskogo protsessa obrabotki detalei mashin, pri integratsii abrazivnogo shlifovaniya i poverkhnostnoi zakalki TVCh. Diss. kand. tekhn. nauk [Improving the efficiency of the technological processing machinery parts with the integration of abrasive grinding and surface hardening currents by high frequency currents. PhD eng. sci. diss.]. Novosibirsk, 2008. 257 p. 74. Ivancivsky V.V. Upravlenie strukturnym i napryazhennym sostoyaniem poverkhnostnykh sloev detalei mashin pri ikh uprochnenii s ispol’zovaniem kontsentrirovannykh istochnikov nagreva i finishnogo shlifovaniya. Diss. dokt. tekhn. nauk [Control of structural and stress state of the surface layers of machine parts during their hardening using concentrated sources of heat and abrasive finishing. Dr. eng. sci. diss.]. Novosibirsk, 2012. 425 p. 75. Ivancivsky V.V., Skeeba V.Yu. Effektivnost’ ob”edineniya operatsii poverkhnostnoi zakalki i shlifovaniya na odnom tekhnologicheskom oborudovanii [Integration effectiveness of operations of surface hardening and grinding on a single technology equipment]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2010, no. 4, pp. 15–21. 76. Gao K., Qin X. Effect of feed path on the spot continual induction hardening for different curved surfaces of AISI 1045 steel. International Communications in Heat and Mass Transfer, 2020, vol. 115, p. 104632. DOI: 10.1016/j. icheatmasstransfer.2020.104632. 77. Javaheri V., Haiko O., Sadeghpour S., Valtonen K., Kömi J., Porter D. On the role of grain size on slurry erosion behavior of a novel medium-carbon, low-alloy pipeline steel after induction hardening. Wear, 2021, vol. 476, p. 203678. DOI: 10.1016/j.wear.2021.203678. 78. Asadzadeh M.Z., Raninger P., Prevedel P., Ecker W., Mücke M. Hybrid modeling of induction hardening processes. Applications in Engineering Science, 2021, vol. 5, p. 100030. DOI: 10.1016/j.apples.2020.100030. 79. Areitioaurtena M., Segurajauregi U., Urresti I., Fisk M., Ukar E. Predicting the induction hardened case in 42CrMo4 cylinder. Procedia CIRP, 2020, vol. 87, pp. 545–550. DOI: 10.1016/j.procir.2020.02.034. 80. Hammouma C., Zeroug H. Enhanced frequency adaptation approaches for series resonant inverter control under workpiece permeability effect for induction hardening applications. Engineering Science and Technology, 2021. DOI: 10.1016/j.jestch.2021.05.010. 81. Li F., Li X., Wang T., Rong Y.(K.), Liang S.Y. In-process residual stresses regulation during grinding through induction heating with magnetic flux concentrator. International Journal of Mechanical Sciences, 2020, vol. 172, p. 105393. DOI: 10.1016/j.ijmecsci.2019.105393. 82. Skeeba V.Yu., Zverev E.A., Skeeba P.Yu., Chernikov A.D., Popkov A.S. Gibridnoe tekhnologicheskoe oborudovanie: k voprosu ratsional’nogo vybora ob”ektov modernizatsii pri provedenii rabot, svyazannykh s doosnashcheniem standartnoi stanochnoi sistemy dopolnitel’nym kontsentrirovannym istochnikom energii [Hybrid technological equipment: on the issue of a rational choice of objects of modernization when carrying out work related to retrofitting a standard machine tool system with an additional concentrated energy source]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2023, vol. 25, no. 2, pp. 45–67. DOI: 10.17212/1994-6309-2023-25.2-45-67. 83. Ivancivsky V.V., Skeeba V.Yu., Pushnin V.N. Metodika naznacheniya rezhimov obrabotki pri sovmeshchenii operatsii abrazivnogo shlifovaniya i poverkhnostnoi zakalki TVCh [Methods of appointment processing conditions when combining the operations of abrasive grinding and surface induction hardening]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2011, no. 4, pp. 19–25. 84. Kazantsev M.E. Postroenie strukturnykh skhem stankov i nastroiki ispolnitel’nykh dvizhenii [Construction of block diagrams of machine tools and adjustment of executive movements]. Novosibirsk, NSTU Publ., 1997. 54 p. 85. Ptitsyn S.V., Levitskii L.V. Strukturnyi analiz i sintez kinematiki metallorezhushchikh stankov [Structural analysis and kinematics synthesis of machine tools]. Kiev, UMK Publ., 1989. 70 p. 86. Fedotenok A.A. Kinematicheskaya struktura metallorezhushchikh stankov [Kinematic structure of machine tools]. Moscow, Mashinostroenie Publ., 1970. 408 p. 87. Skeeba V.Yu., Ivantsivsky V.V., Nos O.V., Zverev E.A., Martynova T.G., Vakhrushev N.V., Vanag Yu.V., Titova K.A., Cha G.O., Skiba P.Yu. Povyshenie effektivnosti proektirovaniya gibridnogo metalloobrabatyvayushchego oborudovaniya, ob”edinyayushchego mekhanicheskuyu i poverkhnostno-termicheskuyu operatsii [Improving the efficiency of the conceptual design of the integrated metal-cutting equipment, combining mechanical and surface thermal operation]. Report on the research work of the project N 9.11829.2018/11.12. State registration no. АААА-Б19-219020690026-1, 2018. 197 p. 88. Vragov Yu.D. Analiz komponovok metallorezhushchikh stankov (Osnovy komponetiki) [Analysis of the layout of machine tools. The basics of compositing]. Moscow, Mashinostroenie Publ., 1978. 208 p.

RkJQdWJsaXNoZXIy MTk0ODM1