Structure and properties of HEA-based coating reinforced with CrB particles

OBRABOTKAMETALLOV Vol. 25 No. 3 2023 103 MATERIAL SCIENCE 21. Cantor B. Multicomponent high-entropy Cantor alloys. Progress in Materials Science, 2021, vol. 120, pp. 1–36. DOI: 10.1016/j.pmatsci.2020.100754. 22. Mridha S., Das S., Aouadi S., Mukherjee S., Mishra R.S. Nanomechanical behavior of CoCrFeMnNi highentropy alloy. JOM Journal of the Minerals Metals and Materials Society, 2015, vol. 67, iss. 10, pp. 2296–2302. DOI: 10.1007/s11837-015-1566-6. 23. ZaddachA.J., Niu C., Koch C.C., Irving D.L. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM Journal of the Minerals Metals and Materials Society, 2013, vol. 65, iss. 12, pp. 1780–1789. DOI: 10.1007/s11837-013-0771-4. 24. Han Z., Ren W., Yang J., Tian A., Du Y., Liu G., Wei R., Zhang G., Chen Y. The corrosion behavior of ultra-fi ne grained CoNiFeCrMn high-entropy alloys. Journal of Alloys and Compounds, 2020, vol. 816, pp. 1–10. DOI: 10.1016/j. jallcom.2019.152583. 25. Laurent-Brocq M., Akhatova A., Perrière L., Chebini S., Sauvage X., Leroy E., Champion Y. Insights into the phase diagram of the CrMnFeCoNi high entropy alloy. Acta Materialia, 2015, vol. 88, pp. 355–365. DOI: 10.1016/j. actamat.2015.01.068. 26. Bataeva Z., Ruktuev A., Ivanov I., Yurgin A., Bataev I. Review of alloys developed using the entropy approach. Metal Working and Material Science, 2021, vol. 23, iss. 2, pp. 116–146. DOI: 10.17212/1994-6309-2021-23.2-116-146. 27. Zaddach A.J., Scattergood R.O., Koch C.C. Tensile properties of low-stacking fault energy high-entropy alloys. Materials Science and Engineering: A, 2015, vol. 636, pp. 373–378. DOI: 10.1016/j.msea.2015.03.109. 28. Gromov V.E., Rubannikova Y.A., Konovalov S.V., Osintsev K.A., Vorob’ev S.V. Generation of increased mechanical properties of Cantor highentropy alloy. Izvestiya vysshikh uchebnykh zavedenii. Chernaya Metallurgiya = Izvestiya. Ferrous Metallurgy, 2021, vol. 64 (8), pp. 599–605. DOI: 10.17073/0368-0797-2021-8-599-605. (In Russian). 29. Zhang T., Zhao R.D., Wu F.F., Lin S.B., Jiang S.S., Huang Y.J., Chen S.H., Eckert J. Transformation-enhanced strength and ductility in a FeCoCrNiMn dual phase high-entropy alloy. Materials Science and Engineering: A, 2020, vol. 780, pp. 1–7. DOI: 10.1016/j.msea.2020.139182. 30. Uporov S.A., Ryltsev R.E., Bykov V.A., Estemirova S.K., Zamyatin D.A. Microstructure, phase formation and physical properties of AlCoCrFeNiMn high-entropy alloy. Journal of Alloys and Compounds, 2020, vol. 820, pp. 1–8. DOI: 10.1016/j.jallcom.2019.153228. 31. Fang S., Wang C., Li C.L., Luan J.H., Jiao Z.B., Liu C.T., Hsueh C.H. Microstructures and mechanical properties of CoCrFeMnNiV high entropy alloy fi lms. Journal of Alloys and Compounds, 2020, vol. 820, pp. 1–8. DOI: 10.1016/j. jallcom.2019.153388. 32. Yim D., Sathiyamoorthi P., Hong S.J., Kim H.S. Fabrication and mechanical properties of TiC reinforced CoCrFeMnNi high-entropy alloy composite by water atomization and spark plasma sintering. Journal of Alloys and Compounds, 2019, vol. 781, pp. 389–396. DOI: 10.1016/j.jallcom.2018.12.119. 33. Shen L., Zhao Y., Li Y., Wu H., Zhu H., Xie Z. Synergistic strengthening of FeCrNiCo high entropy alloys via micro-TiC and nano-SiC particles. Materials Today Communications, 2021, vol. 26, pp. 1–7. DOI: 10.1016/j. mtcomm.2020.101729. 34. Hussain S.W., MehmoodM.A., KarimM.R.A., GodfreyA.,YaqoobK. Microstructural evolution andmechanical characterization of a WC-reinforced CoCrFeNi HEAmatrix composite. Scientifi c Reports, 2022, vol. 12, iss. 1, p. 9822. DOI: 10.1038/s41598-022-13649-5. 35. Zhang B., Yu Y., Zhu S., Zhang Z., Tao X., Wang Z., Lu B. Microstructure and wear properties of TiN–Al2O3– Cr2B multiphase ceramics in-situ reinforced CoCrFeMnNi high-entropy alloy coating. Materials Chemistry and Physics, 2022, vol. 276, p. 125352. DOI: 10.1016/j.matchemphys.2021.125352. 36. Mehmood M.A., Mujahid M., Godfrey A., Zafar M.F., Yaqoob K. Development and characterization of boridereinforced CoCrFeNi composites. Journal of Alloys and Compounds, 2023, vol. 947, p. 169535. DOI: 10.1016/j. jallcom.2023.169535. 37. Chen X., Qin G., Gao X., Chen R., Song Q., Cui H. Strengthening CoCrFeNi high-entropy alloy by Laves and boride phases. China Foundry, 2022, vol. 19, iss. 6, pp. 457–463. DOI: 10.1007/s41230-022-1007-4. 38. RuktuevA.A., Lazurenko D.V., Ogneva T.S., Kuzmin R.I., Golkovski M.G., Bataev I.A. Structure and oxidation behavior of CoCrFeNiX (where X is Al, Cu, or Mn) coatings obtained by electron beam cladding in air atmosphere. Surface and Coatings Technology, 2022, vol. 448, p. 128921. DOI: 10.1016/j.surfcoat.2022.128921. Confl icts of Interest The authors declare no confl ict of interest. © 2023 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).

RkJQdWJsaXNoZXIy MTk0ODM1