Structure and properties of HEA-based coating reinforced with CrB particles

OBRABOTKAMETALLOV Vol. 25 No. 3 2023 99 MATERIAL SCIENCE Physics and Chemistry. ‒ 2000. ‒ Vol. 57, iss. 3–6. ‒ P. 653–655. ‒ DOI: 10.1016/s0969-806x(99)00499-5. 15. Infl uence of chromiumconcentrationon corrosion resistance of surface layers of stainless steel / N.F. Uvarov, E. Bushueva, Y. Turlo, G. Khamgushkeeva // MATEC Web of Conferences. ‒ 2021. ‒ Vol. 340. ‒ P. 1–5. ‒ DOI: 10.1051/matecconf/202134001022. 16. Raising the resistance of chromium-nickel steel to hydroabrasive wear by non-vacuum electron-beam cladding with boron / E.G. Bushueva, B.E. Grinberg, V.A. Bataev, E.A. Drobyaz // Metal Science and Heat Treatment. ‒ 2019. ‒ Vol. 60, iss. 9–10. ‒ P. 641–644. ‒ DOI: 10.1007/s11041-019-00331-3. 17. Structure and properties of titanium surface layers after electron beam alloying with powder mixtures containing carbon / O.G. Lenivtseva, I.A. Bataev, M.G. Golkovskii, A.A. Bataev, V.V. Samoilenko, N.V. Plotnikova // Applied Surface Science. ‒ 2015. ‒ Vol. 355. ‒ P. 320–326. ‒ DOI: 10.1016/j. apsusc.2015.07.043. 18. Structure of surface layers produced by non-vacuum electron beam boriding / I.A. Bataev, A.A. Bataev, M.G. Golkovski, D.S. Krivizhenko, A.A. Losinskaya, O.G. Lenivtseva // Applied Surface Science. ‒ 2013. ‒ Vol. 284. ‒ P. 472–481. ‒ DOI: 10.1016/j.apsusc.2013.07.121. 19. Non-vacuum electron-beam carburizing and surface hardening of mild steel / I.A. Bataev, M.G. Golkovskii, A.A. Losinskaya, A.A. Bataev, A.I. Popelyukh, T. Hassel, D.D. Golovin // Applied Surface Science. ‒ 2014. ‒ Vol. 322. ‒ P. 6–14. ‒ DOI: 10.1016/j.apsusc.2014.09.137. 20. Formation of wear-resistant copper-bearing layers on the surfaces of steel substrates by non-vacuum electron beam acladding using powder mixtures / D.V. Lazurenko, G.I. Alferova, M.G. Golkovsky, K.I. Emurlaev, Y.Y. Emurlaeva, I.A. Bataev, T.S. Ogneva, A.A. Ruktuev, N.V. Stepanova, A.A. Bataev // Surface and Coatings Technology. ‒ 2020. ‒ Vol. 395. ‒ P. 1–14. ‒ DOI: 10.1016/j.surfcoat.2020.125927. 21. Cantor B. Multicomponent high-entropy Cantor alloys // Progress inMaterials Science. ‒ 2021. ‒ Vol. 120. ‒ P. 1–36. ‒ DOI: 10.1016/j.pmatsci.2020.100754. 22. Nanomechanical behavior of CoCrFeMnNi high-entropy alloy / S. Mridha, S. Das, S. Aouadi, S. Mukherjee, R.S. Mishra // JOM Journal of theMinerals Metals and Materials Society. ‒ 2015. ‒ Vol. 67, iss. 10. ‒ P. 2296–2302. ‒ DOI: 10.1007/s11837-015-1566-6. 23. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy / A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving // JOM Journal of the Minerals Metals and Materials Society. ‒ 2013. ‒ Vol. 65, iss. 12. ‒ P. 1780–1789. ‒ DOI: 10.1007/s11837-0130771-4. 24. The corrosion behavior of ultra-fi ne grained CoNiFeCrMn high-entropy alloys / Z. Han, W. Ren, J.Yang,A.Tian,Y.Du,G. Liu, R.Wei,G. Zhang,Y. Chen // Journal of Alloys and Compounds. ‒ 2020. ‒ Vol. 816. ‒ P. 1–10. ‒ DOI: 10.1016/j.jallcom.2019.152583. 25. Insights into the phase diagram of the CrMnFeCoNi high entropy alloy / M. Laurent-Brocq, A.Akhatova,L. Perrière, S.Chebini,X. Sauvage,E.Leroy, Y. Champion // Acta Materialia. ‒ 2015. ‒ Vol. 88. ‒ P. 355–365. ‒ DOI: 10.1016/j.actamat.2015.01.068. 26. Review of alloys developed using the entropy approach / Z. Bataeva, A. Ruktuev, I. Ivanov, A. Yurgin, I. Bataev //MetalWorking andMaterial Science. ‒ 2021. ‒ Vol. 23, iss. 2. ‒ P. 116–146. ‒ DOI: 10.17212/19946309-2021-23.2-116-146. 27. Zaddach A.J., Scattergood R.O., Koch C.C. Tensile properties of low-stacking fault energy highentropy alloys // Materials Science and Engineering: A. ‒ 2015. ‒ Vol. 636. ‒ P. 373–378. ‒ DOI: 10.1016/j. msea.2015.03.109. 28. Формирование улучшенных механических свойств высокоэнтропийного сплава Cantor / В.Е. Громов, Ю.А. Рубанникова, С.В. Коновалов, К.А. Осинцев , С.В. Воробьев // Известия высших учебных заведений. Черная Металлургия. – 2021. – Т. 64 (8). – С. 599–605. – DOI: 10.17073/0368-07972021-8-599-605. 29. Transformation-enhanced strength and ductility in a FeCoCrNiMn dual phase high-entropy alloy / T. Zhang, R.D. Zhao, F.F. Wu, S.B. Lin, S.S. Jiang, Y.J. Huang, S.H. Chen, J. Eckert // Materials Science and Engineering: A. ‒ 2020. ‒ Vol. 780. ‒ P. 1–7. ‒ DOI: 10.1016/j.msea.2020.139182. 30. Microstructure, phase formation and physical properties of AlCoCrFeNiMn high-entropy alloy / S.A. Uporov, R.E. Ryltsev, V.A. Bykov, S.K. Estemirova, D.A. Zamyatin // Journal of Alloys and Compounds. ‒ 2020. ‒ Vol. 820. ‒ P. 1–8. ‒ DOI: 10.1016/j. jallcom.2019.153228. 31. Microstructures and mechanical properties of CoCrFeMnNiV high entropy alloy fi lms / S. Fang, C. Wang, C.L. Li, J.H. Luan, Z.B. Jiao, C.T. Liu, C.H. Hsueh // Journal of Alloys and Compounds. ‒ 2020. ‒ Vol. 820. ‒ P. 1–8. ‒ DOI: 10.1016/j. jallcom.2019.153388. 32. Fabrication and mechanical properties of TiC reinforced CoCrFeMnNi high-entropy alloy composite by water atomization and spark plasma sintering / D. Yim, P. Sathiyamoorthi, S.J. Hong, H.S. Kim // Journal of Alloys and Compounds. ‒ 2019. ‒ Vol. 781. ‒ P. 389–396. ‒ DOI: 10.1016/j.jallcom.2018.12.119. 33. Synergistic strengthening of FeCrNiCo high entropy alloys via micro-TiC and nano-SiC particles / L. Shen, Y. Zhao, Y. Li, H. Wu, H. Zhu, Z. Xie // Materials

RkJQdWJsaXNoZXIy MTk0ODM1