Structure and properties of HEA-based coating reinforced with CrB particles

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 25 No. 3 2023 12. Cheng J.B., Liang X.B., Wang Z.H., Xu B.S. Formation and mechanical properties of CoNiCuFeCr high-entropy alloys coatings prepared by plasma transferred arc cladding process. Plasma Chemistry and Plasma Processing, 2013, vol. 33, iss. 5, pp. 979–992. DOI: 10.1007/s11090-013-9469-1. 13. Hsu W.L., Murakami H., Yeh J.W., Yeh A.C., Shimoda K. On the study of thermal-sprayed Ni0.2Co0.6Fe0.2CrSi0.2AlTi0.2 HEA overlay coating. Surface and Coatings Technology, 2017, vol. 316, pp. 71–74. DOI: 10.1016/j.surfcoat.2017.02.073. 14. Fadeev S.N., Golkovski M.G., Korchagin A.I., Kuksanov N.K., Lavruhin A.V., Petrov S.E., Salimov R.A., Vaisman A.F. Technological applications of BINP industrial electron accelerators with focused beam extracted into atmosphere. Radiation Physics and Chemistry, 2000, vol. 57, iss. 3–6, pp. 653–655. DOI: 10.1016/s0969806x(99)00499-5. 15. Uvarov N.F., Bushueva E., Turlo Y., Khamgushkeeva G. Influence of chromium concentration on corrosion resistance of surface layers of stainless steel. MATEC Web of Conferences, 2021, vol. 340, pp. 1–5. DOI: 10.1051/ matecconf/202134001022. 16. Bushueva E.G., Grinberg B.E., Bataev V.A., Drobyaz E.A. Raising the resistance of chromium-nickel steel to hydroabrasive wear by non-vacuum electron-beam cladding with boron. Metal Science and Heat Treatment, 2019, vol. 60, iss. 9–10, pp. 641–644. DOI: 10.1007/s11041-019-00331-3. 17. Lenivtseva O.G., Bataev I.A., Golkovskii M.G., Bataev A.A., Samoilenko V.V., Plotnikova N.V. Structure and properties of titanium surface layers after electron beam alloying with powder mixtures containing carbon. Applied Surface Science, 2015, vol. 355, pp. 320–326. DOI: 10.1016/j.apsusc.2015.07.043. 18. Bataev I.A., Bataev A.A., Golkovski M.G., Krivizhenko D.S., Losinskaya A.A., Lenivtseva O.G. Structure of surface layers produced by non-vacuum electron beam boriding. Applied Surface Science, 2013, vol. 284, pp. 472–481. DOI: 10.1016/j.apsusc.2013.07.121. 19. Bataev I.A., Golkovskii M.G., Losinskaya A.A., Bataev A.A., Popelyukh A.I., Hassel T., Golovin D.D. Nonvacuum electron-beam carburizing and surface hardening of mild steel. Applied Surface Science, 2014, vol. 322, pp. 6–14. DOI: 10.1016/j.apsusc.2014.09.137. 20. Lazurenko D.V., Alferova G.I., Golkovsky M.G., Emurlaev K.I., Emurlaeva Y.Y., Bataev I.A., Ogneva T.S., Ruktuev A.A., Stepanova N.V., Bataev A.A. Formation of wear-resistant copper-bearing layers on the surfaces of steel substrates by non-vacuum electron beam acladding using powder mixtures. Surface and Coatings Technology, 2020, vol. 395, p. 1–14. DOI: 10.1016/j.surfcoat.2020.125927. 21. Cantor B. Multicomponent high-entropy Cantor alloys. Progress in Materials Science, 2021, vol. 120, pp. 1–36. DOI: 10.1016/j.pmatsci.2020.100754. 22. Mridha S., Das S., Aouadi S., Mukherjee S., Mishra R.S. Nanomechanical behavior of CoCrFeMnNi highentropy alloy. JOM Journal of the Minerals Metals and Materials Society, 2015, vol. 67, iss. 10, pp. 2296–2302. DOI: 10.1007/s11837-015-1566-6. 23. ZaddachA.J., Niu C., Koch C.C., Irving D.L. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM Journal of the Minerals Metals and Materials Society, 2013, vol. 65, iss. 12, pp. 1780–1789. DOI: 10.1007/s11837-013-0771-4. 24. Han Z., Ren W., Yang J., Tian A., Du Y., Liu G., Wei R., Zhang G., Chen Y. The corrosion behavior of ultra-fine grained CoNiFeCrMn high-entropy alloys. Journal of Alloys and Compounds, 2020, vol. 816, pp. 1–10. DOI: 10.1016/j. jallcom.2019.152583. 25. Laurent-Brocq M., Akhatova A., Perrière L., Chebini S., Sauvage X., Leroy E., Champion Y. Insights into the phase diagram of the CrMnFeCoNi high entropy alloy. Acta Materialia, 2015, vol. 88, pp. 355–365. DOI: 10.1016/j. actamat.2015.01.068. 26. Bataeva Z., Ruktuev A., Ivanov I., Yurgin A., Bataev I. Review of alloys developed using the entropy approach. Metal Working and Material Science, 2021, vol. 23, iss. 2, pp. 116–146. DOI: 10.17212/1994-6309-2021-23.2-116-146. 27. Zaddach A.J., Scattergood R.O., Koch C.C. Tensile properties of low-stacking fault energy high-entropy alloys. Materials Science and Engineering: A, 2015, vol. 636, pp. 373–378. DOI: 10.1016/j.msea.2015.03.109. 28. Gromov V.E., Rubannikova Y.A., Konovalov S.V., Osintsev K.A., Vorob’ev S.V. Generation of increased mechanical properties of Cantor highentropy alloy. Izvestiya vysshikh uchebnykh zavedenii. Chernaya Metallurgiya = Izvestiya. Ferrous Metallurgy, 2021, vol. 64 (8), pp. 599–605. DOI: 10.17073/0368-0797-2021-8-599-605. (In Russian). 29. Zhang T., Zhao R.D., Wu F.F., Lin S.B., Jiang S.S., Huang Y.J., Chen S.H., Eckert J. Transformation-enhanced strength and ductility in a FeCoCrNiMn dual phase high-entropy alloy. Materials Science and Engineering: A, 2020, vol. 780, pp. 1–7. DOI: 10.1016/j.msea.2020.139182. 30. Uporov S.A., Ryltsev R.E., Bykov V.A., Estemirova S.K., Zamyatin D.A. Microstructure, phase formation and physical properties of AlCoCrFeNiMn high-entropy alloy. Journal of Alloys and Compounds, 2020, vol. 820, pp. 1–8. DOI: 10.1016/j.jallcom.2019.153228.

RkJQdWJsaXNoZXIy MTk0ODM1