Synthesis of Ti – Fe intermetallic compounds from elemental powders mixtures

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 25 No. 3 2023 3. Zadorozhnyi V.Yu., Skakov Yu.A., Milovzorov G.S. Appearance of metastable states in Fe–Ti and Ni–Ti systems in the process of mechanochemical synthesis. Metal Science and Heat Treatment, 2008, vol. 50, iss. 7, pp. 404–410. DOI: 10.1007/s11041-008-9078-4. 4. Zadorozhnyy V., Klyamkin S., Zadorozhnyy M., Bermesheva O., Kaloshkin S. Hydrogen storage nanocrystalline TiFe intermetallic compound: synthesis by mechanical alloying and compacting. International Journal of Hydrogen Energy, 2012, vol. 37, iss. 22, pp. 17131–17136. DOI: 10.1016/j.ijhydene.2012.08.078. 5. Zadorozhnyy V.Yu., Klyamkin S.N., Zadorozhnyy M.Yu., Gorshenkov M.V., Kaloshkin S.D. Mechanical alloying of nanocrystalline intermetallic compound TiFe doped with sulfur and magnesium. Journal of Alloys and Compounds, 2014, vol. 615, pp. S569–S572. DOI: 10.1016/j.jallcom.2013.12.144. 6. Zadorozhnyy V.Yu., Klyamkin S.N., Zadorozhnyy M.Yu., Bermesheva O.V., Kaloshkin S.D. Mechanical alloying of nanocrystalline intermetallic compound TiFe doped by aluminum and chromium. Journal of Alloys and Compounds, 2014, vol. 586, pp. S56–S60. DOI: 10.1016/j.jallcom.2013.01.138. 7. Zadorozhnyy V.Yu., Klyamkin S.N., Zadorozhnyy M.Yu., Strugova D.V., Milovzorov G.S., LouzguineLuzgin D.V., Kaloshkin S.D. Effect of mechanical activation on compactibility of metal hydride materials. Journal of Alloys and Compounds, 2017, vol. 707, pp. 214–219. DOI: 10.1016/j.jallcom.2016.11.320. 8. Zadorozhnyy V.Yu., Milovzorov G.S., Klyamkin S.N., Zadorozhnyy M.Yu., Strugova D.V., Gorshenkov M.V., Kaloshkin S.D. Preparation and hydrogen storage properties of nanocrystalline TiFe synthesized by mechanical alloying. Progress in Natural Science: Materials International, 2017, vol. 27, iss. 1, pp. 149–155. DOI: 10.1016/j.pnsc.2016.12.008. 9. Zaluski L., Zaluska A., Ström-Olsen J.O. Nanocrystalline metal hydrides. Journal of Alloys and Compounds, 1997, vol. 253–254, pp. 70–79. DOI: 10.1016/S0925-8388(96)02985-4. 10. Dobromyslova A.V., Taluts N.I. Mechanical alloying of Ti–Fe alloys using severe plastic deformation by high-pressure torsion. Physics of Metals and Metallography, 2018, vol. 119, no. 11, pp. 1127–1132. DOI: 10.1134/ S0031918X18110030. 11. Rogachev A.S., Mukas’yan A.S. Gorenie dlya sinteza materialov: vvedenie v strukturnuyu makrokinetiku [Combustion for the synthesis of materials: an introduction to structural macrokinetics]. Moscow, Fizmatlit Publ., 2013. 399 p. ISBN 978-5-9221-1441-7. 12. Grigorieva T.F., Barinova A.P., Lyakhov N.Z. Mechanochemical synthesis of intermetallic compounds. Russian Chemical Reviews, 2001, vol. 70, iss. 1, pp. 45–63. DOI: 10.1070/RC2001v070n01ABEH000598. Translated from Uspekhi khimii, 2001, vol. 70 (1), pp. 52–71. 13. Avvakumov E.G. Mekhanicheskie metody aktivatsii khimicheskikh protsessov [Mechanical methods of activation of chemical processes]. Novosibirsk, Nauka Publ., 1986. 303 p. 14. Lyakhov N.Z., Talako T.L., Grigor’eva T.F. Vliyanie mekhanoaktivatsii na protsessy fazo- i strukturoobrazovaniya pri samorasprostranyayushchemsya vysokotemperaturnom sinteze [Influence of mechanical activation on the processes of phase and structure formation during self-propagating high-temperature synthesis]. Novosibirsk, Parallel’ Publ., 2008. 168 p. 15. Pribytkov G.A., Semenova A.A., Itin V.I. Sintez v rezhime goreniya intermetallidov sistemy zhelezo – titan [Synthesis of intermetallic compounds of the iron – titanium system in the combustion mode]. Fizika goreniya i vzryva = Combustion, Explosion, and Shock Waves, 1984, no. 5, pp. 21–23. (In Russian). 16. Naiborodenko Ju.S., Kasatskii N.G., Sergeeva E.G., Lepakova O.K. Vliyanie mekhanicheskoi aktivatsii na vysokotemperaturnyi sintez i fazoobrazovanie nizkokaloriinykh intermetallicheskikh soedinenii [Influence of mechanical activation on high-temperature synthesis and phase formation of low-calorieinter metallic compounds]. Khimiya v interesakh ustoichivogo razvitiya = Chemistry for Sustainable Development, 2002, vol. 10 (1–2), pp. 199–204. (In Russian). 17. Grigor’eva T.F., Kovaleva S.A., Kiseleva T.Yu., Vosmerikov S.V., Devyatkina E.T., Pastukhov E.A., Lyakhov N.Z. Morphological characteristics of mechanochemically synthesized Fe/Ti composites. Russian Metallurgy (Metally), 2016, vol. 2016, no. 8, pp. 737–741. DOI: 10.1134/S0036029516080048. 18. Saito T. Magnetic properties of Ti–Fe alloy powders prepared by mechanical grinding. Journal of Alloys and Compounds, 2004, vol. 364, iss. 1, pp. 113–116. DOI: 10.1016/S0925-8388(03)00532-2.

RkJQdWJsaXNoZXIy MTk0ODM1