Modeling the interrelation of the cutting force with the cutting depth and the volumes of the metal being removed by single grains in flat grinding

OBRABOTKAMETALLOV Vol. 25 No. 4 2023 20 TECHNOLOGY 3. Filimonov L.N. Vysokoskorostnoe shlifovanie [High-speed grinding]. Leningrad, Mashinostroenie Publ., 1979. 248 p. 4. Nikolaenko A.A. Modelirovanie obespecheniya tochnosti obrabotki pri ploskom glubinnom shlifovanii periferiei kruga [Simulation of ensuring the accuracy of processing in fl at deep-feed grinding by the periphery of the circle]. Tekhnologiya mashinostroeniya, 2011, no. 5, pp. 57–59. (In Russian). 5. Koshin A.A., Shipulin L.V. Stokhasticheskie modeli temperaturnykh i silovykh yavlenii, proiskhodyashchikh pri shlifovanii, i ikh realizatsiya sredstvami parallel’nykh vychislenii [Temperature and force stochastic models in grinding processes and implementation of them by parallel computing]. Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie = Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2012, no. 18 (277), pp. 20–31. 6. Korolev A.V., Novoselov Yu.K. Teoretiko-veroyatnostnye osnovy abrazivnoi obrabotki. Ch. 2. Vzaimodeistvie instrumenta i zagotovki pri abrazivnoi obrabotke [Probability-theory approach to abrasive machining. Vol. 2. Toolblank interaction in abrasive machining]. Saratov, Saratovskii Universitet Publ., 1989. 160 p. 7. Novoselov Yu.K. Dinamika formoobrazovaniya poverkhnostei pri abrazivnoi obrabotke [Dynamics of surface shaping during abrasive processing]. Sevastopol, SevNTU Publ., 2012. 304 p. ISBN 978-617-612-051-3. 8. Loladze T.N. Sily rezaniya pri shlifovanii metallov [Cutting forces when grinding metals]. Metalloobrabotka = Metalworking, 2002, no. 1, pp. 3–8. 9. Mishin V.N., Balashov V.N. Sily, voznikayushchie pri shlifovanii [Forces arising during grinding]. Avtomobil’naya promyshlennost’ = Automotive Industry, 2010, no. 10, pp. 26–29. 10. Garitaonandia I., Fernandes M.H., Albizuri J. Dynamic model of a centerless grinding machine based on an updated FE model. International Journal of Machine Tools and Manufacture, 2008, vol. 48 (7–8), pp. 832–840. DOI: 10.1016/j.ijmachtools.2007.12.001. 11. Tawakolia T., Reinecke H., Vesali A. An experimental study on the dynamic behavior of grinding wheels in high effi ciency deep grinding. Procedia CIRP, 2012, vol. 1, pp. 382–387. DOI: 10.1016/j.procir.2012.04.068. 12. Jung J., Kim P., Kim H., Seok J. Dynamic modeling and simulation of a nonlinear, non-autonomous grinding system considering spatially periodic waviness on workpiece surface. Simulation Modeling Practice and Theory, 2015, vol. 57, pp. 88–99. DOI: 10.1016/j.simpat.2015.06.005. 13. Yu H., Wang J., Lu Y. Modeling and analysis of dynamic cutting points density of the grinding wheel with an abrasive phyllotactic pattern. The International Journal of Advanced Manufacturing Technology, 2016, vol. 86, pp. 1933–1943. DOI: 10.1007/s00170-015-8262-0. 14. Guo J. Surface roughness prediction by combining static and dynamic features in cylindrical traverse grinding. The International Journal of Advanced Manufacturing Technology, 2014, vol. 75, pp. 1245–1252. DOI: 10.1007/ s00170-014-6189-5. 15. Leonesio M., Parenti P., Cassinari A., Bianchi G., Monno M. A time-domain surface grinding model for dynamic simulation. Procedia CIRP, 2012, vol. 4, pp. 166–171. DOI: 10.1016/j.procir.2012.10.030. 16. Li H., Shin Y.C. A time-domain dynamic model for chatter prediction of cylindrical plunge grinding. Journal of Manufacturing Science and Engineering, 2006, vol. 128 (2), pp. 404–415. DOI: 10.1115/1.2118748. 17. Patnaik D., Vijayender S., Paruchur V.R. Anewmodel for grinding force prediction and analysis. International Journal of Machine Tools and Manufacture, 2010, vol. 50, pp. 231–240. DOI: 10.1016/j.ijmachtools.2009.12.004. 18. Zhang N., Kirpitchenko I., Liu D.K. Dynamic model of the grinding process. Journal of Sound and Vibration, 2005, vol. 280, pp. 425–432. DOI: 10.1016/j.jsv.2003.12.006. 19. LajmertP.,SikoraV.,OstrowskiD.Adynamicmodelofcylindricalplungegrindingprocessforchatterphenomena investigation. MATEC Web of Conferences, 2018, vol. 148, p. 09004. DOI: 10.1051/matecconf/201814809004. 20. Ahrens M., Damm J., Dagen M., Denkena B., Ortmaier T. Estimation of dynamic grinding wheel wear in plunge grinding. Procedia CIRP, 2017, vol. 58, pp. 422–427. DOI: 10.1016/j.procir.2017.03.247. 21. Gomes M.O., Neto L.M., Pereira R.B., Brandão L.C. Infl uence of cutting parameters on surface hardening of 52100 steel in fl at grinding process. The International Journal of Advanced Manufacturing Technology, 2018, vol. 96, pp. 1–3. DOI: 10.1007/s00170-018-1656-z. 22. BakšaT., Farsky J., HronekO., ZetekM. Impact of cutting speed on grindingwheel wear and cutting force when grinding. Manufacturing Technology, 2018, vol. 18 (5), pp. 699–703. DOI: 10.21062/ujep/163.2018/a/1213-2489/ MT/18/5/699. 23. Nadolny K., Plichta J., Bałasz B. Application of computer modeling and simulation for designing of grinding wheels with zone-diversifi ed structure. Management and Production Engineering Review, 2010, vol. 1 (4), pp. 38–45.

RkJQdWJsaXNoZXIy MTk0ODM1