A systematic review of processing techniques for cellular metallic foam production

OBRABOTKAMETALLOV Vol. 25 No. 4 2023 31 TECHNOLOGY 4. Kulshreshtha A., Dhakad S.K. Preparation of metal foam by diff erent methods: A review // Materials Today: Proceedings. – 2020. – Vol. 26, pt. 2. – P. 1784–1790. – DOI: 10.1016/j.matpr.2020.02.375. 5. Singh S., Bhatnagar N. A survey of fabrication and application of metallic foams (1925–2017) // Journal of Porous Materials. – 2018. – Vol. 25 (2). – P. 537–554. – DOI: 10.1007/s10934-017-0467-1. 6. Karuppasamy R., Barik D. Production methods of aluminium foam: A brief review // Materials Today: Proceedings. – 2021. – Vol. 37, pt. 2. – P. 1584–1587. – DOI: 10.1016/j.matpr.2020.07.161. 7. Yuan J.Y., Li Y.X. Eff ect of orifi ce geometry on bubble formation in melt gas injection to prepare aluminum foams // Science China Technological Sciences. – 2015. – Vol. 58 (1). – P. 64–74. – DOI: 10.1007/s11431-014-5669-z. 8. The cell size reduction of aluminum foam with dynamic gas injection based on the improved foamable melt / N. Wang, X. Chen, Y. Li, Z. Liu, Z. Zhao, Y. Cheng, Y. Liu, H. Zhang // Colloids and Surfaces A: Physicochemical and Engineering Aspects. – 2017. – Vol. 527. – P. 123–131. – DOI: 10.1016/j. colsurfa.2017.05.023. 9. Goyal B., Pandey A. Critical review on porous material manufacturing techniques, properties & their applications // Materials Today: Proceedings. – 2021. – Vol. 46, pt. 17. – P. 8196–8203. – DOI: 10.1016/j. matpr.2021.03.163. 10. Porosity control in aluminium foams using diff erent additives / G.Avinash, V. Harika, C. Sandeepika, R. Kumar, N. Gupta // Materials Today: Proceedings. – 2019. – Vol. 18. – P. 1054–1057. – DOI: 10.1016/j. matpr.2019.06.563. 11. Jaafar A.H., Al-Ethari H., Farhan K. Modelling and optimization of manufacturing calcium carbonatebased aluminum foam // Materials Research Express. – 2019. – Vol. 6 (8). – DOI: 10.1088/2053-1591/ab2602. 12. Ghaleh M.H., Ehsani N., Baharvandi H.R. High-porosity closed-cell aluminum foams produced by meltingmethodwithout stabilizer particles // International Journal of Metalcasting. – 2021. – Vol. 15 (3). – P. 899– 905. – DOI: 10.1007/s40962-020-00528-w. 13. Heidari Ghaleh M., Ehsani N., Baharvandi H.R. Compressive properties of A356 closed-cell aluminum foamed with a CaCO3 foaming agent without stabilizer particles // Metals and Materials International. – 2020. – Vol. 27 (10). – P. 3856–3861. – DOI: 10.1007/s12540020-00807-5. 14. Investigation on the eff ect of aluminium foam made of A413 aluminium alloy through stir casting and infi ltration techniques / R. Karuppasamy, D. Barik, N.M. Sivaram, M.S. Dennison // International Journal of Materials Engineering Innovation. – 2020. –Vol. 11 (1). – P. 34–50. – DOI: 10.1504/IJMATEI.2020.104790. 15. Yang C.C., Nakae H. Foaming characteristics control during production of aluminum alloy foam // Journal of Alloys and Compounds. – 2000. – Vol. 313 (1–2). – P. 188–191. – DOI: 10.1016/S09258388(00)01136-1. 16. Comparison of aluminium foams prepared by diff erent methods using X-ray tomography / N. Wang, E. Maire, Y. Cheng, Y. Amani, Y. Li, J. Adrien, X. Chen // Materials Characterization. – 2018. – Vol. 138. – P. 296– 307. – DOI: 10.1016/j.matchar.2018.02.015. 17. Shapovalov V. Prospective applications of gaseutectic porous materials (gasars) in USA // Materials Science Forum. – 2007. – Vol. 539–543. – P. 1183– 1187. – DOI: 10.4028/www.scientifi c.net/msf.539-543. 1183. 18. Liu Y., Li Y., Wan J. Directional solidifi cation of metal-gas eutectic and fabrication of regular porous metals // Frontiers of Mechanical Engineering in China. – 2007. – Vol. 2 (2). – P. 180–183. – DOI: 10.1007/s11465007-0030-x. 19. Banhart J. Manufacturing routes for very low specifi c // JOM. – 2000. – Vol. 52 (12). – P. 22–27. 20. Güner A., Arıkan M.M., Nebioglu M. New approaches to aluminum integral foam production with casting methods // Metals. – 2015. – Vol. 5 (3). – P. 1553–1565. – DOI: 10.3390/met5031553. 21. Gama N., Ferreira A., Barros-Timmons A. 3D printed thermoplastic polyurethane fi lled with polyurethane foams residues // Journal of Polymers and the Environment. – 2020. – Vol. 28 (5). – P. 1560–1570. – DOI: 10.1007/s10924-020-01705-y. 22. Sound absorption of open celled aluminium foam fabricated by investment casting method / X.F. Wang, X.F. Wang, X. Wei, F.S. Han, X.L. Wang // Materials Science and Technology. – 2011. – Vol. 27 (4). – P. 800– 804. – DOI: 10.1179/026708309X12506934374047. 23. Lichy P., Bednarova V., Elbel T. Casting routes for porous metals production // Archives of Foundry Engineering. – 2012. – Vol. 12 (1). – P. 71–74. – DOI: 10.2478/v10266-012-0014-0. 24. Investigation of a template-based process chain for investment casting of open-cell metal foams / P. Kubelka, F. Körte, J. Heimann, X. Xiong, N. Jost // Advanced Engineering Materials. – 2022. – Vol. 24 (1). – DOI: 10.1002/adem.202100608. 25. Investment casting and mechanical properties of open-cell steel foams / J. Fromert, T.G. Lott, A.M. Matz, N. Jost // Advanced Engineering Materials. – 2019. – Vol. 21 (6). – P. 1–7. – DOI: 10.1002/adem.201900396. 26. Anglani A., Pacella M. Logistic regression and response surface design for statistical modeling of investment casting process in metal foam production // Procedia CIRP. – 2018. – Vol. 67. – P. 504–509. – DOI: 10.1016/j.procir.2017.12.252.

RkJQdWJsaXNoZXIy MTk0ODM1