A systematic review of processing techniques for cellular metallic foam production

OBRABOTKAMETALLOV Vol. 25 No. 4 2023 34 TECHNOLOGY 5. Singh S., Bhatnagar N. A survey of fabrication and application of metallic foams (1925–2017). Journal of Porous Materials, 2018, vol. 25 (2), pp. 537–554. DOI: 10.1007/s10934-017-0467-1. 6. Karuppasamy R., Barik D. Production methods of aluminium foam: A brief review. Materials Today: Proceedings, 2021, vol. 37, pt. 2, pp. 1584–1587. DOI: 10.1016/j.matpr.2020.07.161. 7. Yuan J.Y., Li Y.X. Eff ect of orifi ce geometry on bubble formation in melt gas injection to prepare aluminum foams. Science China Technological Sciences, 2015, vol. 58 (1), pp. 64–74. DOI: 10.1007/s11431-014-5669-z. 8. Wang N., Chen X., Li Y., Liu Z., Zhao Z., Cheng Y., Liu Y., Zhang H. The cell size reduction of aluminum foam with dynamic gas injection based on the improved foamable melt. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, vol. 527, pp. 123–131. DOI: 10.1016/j.colsurfa.2017.05.023. 9. Goyal B., Pandey A. Critical review on porous material manufacturing techniques, properties & their applications. Materials Today: Proceedings, 2021, vol. 46, pt. 17, pp. 8196–8203. DOI: 10.1016/j.matpr.2021.03.163. 10. Avinash G., Harika V., Sandeepika C., Kumar R., Gupta N. Porosity control in aluminium foams using diff erent additives. Materials Today: Proceedings, 2019, vol. 18, pp. 1054–1057. DOI: 10.1016/j.matpr.2019.06.563. 11. Jaafar A.H., Al-Ethari H., Farhan K. Modelling and optimization of manufacturing calcium carbonate-based aluminum foam. Materials Research Express, 2019, vol. 6 (8). DOI: 10.1088/2053-1591/ab2602. 12. Ghaleh M.H., Ehsani N., Baharvandi H.R. High-porosity closed-cell aluminum foams produced by melting method without stabilizer particles. International Journal of Metalcasting, 2021, vol. 15 (3), pp. 899–905. DOI: 10.1007/s40962-020-00528-w. 13. Heidari GhalehM., Ehsani N., Baharvandi H.R. Compressive properties ofA356 closed-cell aluminum foamed with a CaCO3 foaming agent without stabilizer particles. Metals and Materials International, 2020, vol. 27 (10), pp. 3856–3861. DOI: 10.1007/s12540-020-00807-5. 14. Karuppasamy R., Barik D., Sivaram N.M., Dennison M.S. Investigation on the eff ect of aluminium foam made of A413 aluminium alloy through stir casting and infi ltration techniques. International Journal of Materials Engineering Innovation, 2020, vol. 11 (1), pp. 34–50. DOI: 10.1504/IJMATEI.2020.104790. 15. Yang C.C., Nakae H. Foaming characteristics control during production of aluminum alloy foam. Journal of Alloys and Compounds, 2000, vol. 313 (1–2), pp. 188–191. DOI: 10.1016/S0925-8388(00)01136-1. 16. Wang N., Maire E., ChengY.,Amani Y., Li Y.,Adrien J., Chen X. Comparison of aluminium foams prepared by diff erent methods using X-ray tomography. Materials Characterization, 2018, vol. 138, pp. 296–307. DOI: 10.1016/j. matchar.2018.02.015. 17. Shapovalov V. Prospective applications of gas-eutectic porous materials (gasars) in USA. Materials Science Forum, 2007, vol. 539–543, pp. 1183–1187. DOI: 10.4028/www.scientifi c.net/msf.539-543.1183. 18. Liu Y., Li Y., Wan J. Directional solidifi cation of metal-gas eutectic and fabrication of regular porous metals. Frontiers of Mechanical Engineering in China, 2007, vol. 2 (2), pp. 180–183. DOI: 10.1007/s11465-007-0030-x. 19. Banhart J. Manufacturing routes for very low specifi c. JOM, 2000, vol. 52 (12), pp. 22–27. 20. Güner A., Arıkan M.M., Nebioglu M. New approaches to aluminum integral foam production with casting methods. Metals, 2015, vol. 5 (3), pp. 1553–1565. DOI: 10.3390/met5031553. 21. Gama N., Ferreira A., Barros-Timmons A. 3D printed thermoplastic polyurethane fi lled with polyurethane foams residues. Journal of Polymers and the Environment, 2020, vol. 28 (5), pp. 1560–1570. DOI: 10.1007/s10924020-01705-y. 22. Wang X.F., Wang X.F., Wei X., Han F.S., Wang X.L. Sound absorption of open celled aluminium foam fabricated by investment casting method. Materials Science and Technology, 2011, vol. 27 (4), pp. 800–804. DOI: 10.1179/026708309X12506934374047. 23. Lichy P., BednarovaV., Elbel T. Casting routes for porous metals production. Archives of Foundry Engineering, 2012, vol. 12 (1), pp. 71–74. DOI: 10.2478/v10266-012-0014-0. 24. Kubelka P., Körte F., Heimann J., Xiong X., Jost N. Investigation of a template-based process chain for investment casting of open-cell metal foams. Advanced Engineering Materials, 2022, vol. 24 (1). DOI: 10.1002/ adem.202100608. 25. Fromert J., Lott T.G., Matz A.M., Jost N. Investment casting and mechanical properties of open-cell steel foams. Advanced Engineering Materials, 2019, vol. 21 (6), pp. 1–7. DOI: 10.1002/adem.201900396. 26. Anglani A., Pacella M. Logistic regression and response surface design for statistical modeling of investment casting process in metal foam production. Procedia CIRP, 2018, vol. 67, pp. 504–509. DOI: 10.1016/j. procir.2017.12.252. 27. Kitazono K., Sato E., Kuribayashi K. Novel manufacturing process of closed-cell aluminum foam by accumulative roll-bonding. Scripta Materialia, 2004, vol. 50 (4), pp. 495–498. DOI: 10.1016/j.scriptamat.2003.10.035.

RkJQdWJsaXNoZXIy MTk0ODM1