A systematic review of processing techniques for cellular metallic foam production

OBRABOTKAMETALLOV Vol. 25 No. 4 2023 35 TECHNOLOGY 28. Asavavisithchai S., KennedyA.R. The eff ect of Mg addition on the stability ofAl-Al2O3 foams made by a powder metallurgy route. Scripta Materialia, 2006, vol. 54 (7), pp. 1331–1334. DOI: 10.1016/j.scriptamat.2005.12.015. 29. Cambronero L.E.G., Ruiz-Roman J.M., Corpas F.A., Ruiz Prieto J.M. Manufacturing of Al-Mg-Si alloy foam using calcium carbonate as foaming agent. Journal of Materials Processing Technology, 2009, vol. 209 (4), pp. 1803–1809. DOI: 10.1016/j.jmatprotec.2008.04.032. 30. Koizumi T., Kido K., Kita K., Mikado K., Gnyloskurenko S., Nakamura T. Foaming agents for powder metallurgy production of aluminum foam. Materials Transactions, 2011, vol. 52 (4), pp. 728–733. DOI: 10.2320/ matertrans.M2010401. 31. Yang D., Guo S., Chen J., Qiu C., Agbedor S.-O., Ma A., Jiang J., Wang L. Preparation principle and compression properties of cellular Mg–Al–Zn alloy foams fabricated by the gas release reaction powder metallurgy approach. Journal of Alloys and Compounds, 2021, vol. 857, p. 158112. DOI: 10.1016/j.jallcom.2020.158112. 32. Shiomi M., Imagama S., Osakada K., Matsumoto R. Fabrication of aluminium foams from powder by hot extrusion and foaming. Journal of Materials Processing Technology, 2010, vol. 210 (9), pp. 1203–1208. DOI: 10.1016/j. jmatprotec.2010.03.006. 33. Yu C.J. Metal foaming by a powder metallurgy method: Production, properties and applications. Materials Research Innovations, 1998, vol. 2 (3), pp. 181–188. DOI: 10.1007/s100190050082. 34. Kennedy A. Porous metals and metal foams made from powders. Powder Metallurgy. Ed. by K. Kondoh. InTech, 2012. DOI: 10.5772/33060. 35. Surace R., Filippis L.A.C. de, LudovicoA.D., Boghetich G. Infl uence of processing parameters on aluminium foam produced by space holder technique. Materials and Design, 2009, vol. 30 (6), pp. 1878–1885. DOI: 10.1016/j. matdes.2008.09.027. 36. Rodriguez-Contreras A., Punset M., Calero J.A., Gil F.J., Ruperez E., Manero J.M. Powder metallurgy with space holder for porous titanium implants: A review. Journal of Materials Science and Technology, 2021, vol. 76, pp. 129–149. DOI: 10.1016/j.jmst.2020.11.005. 37. Jha N., Mondal D.P., Dutta Majumdar J., Badkul A., Jha A.K., Khare A.K. Highly porous open cell Tifoam using NaCl as temporary space holder through powder metallurgy route. Materials and Design, 2013, vol. 47, pp. 810–819. DOI: 10.1016/j.matdes.2013.01.005. 38. Sazegaran H., Feizi A., Hojati M. Eff ect of Cr contents on the porosity percentage, microstructure, and mechanical properties of steel foams manufactured by powder metallurgy. Transactions of the Indian Institute of Metals, 2019, vol. 72 (10), pp. 2819–2826. DOI: 10.1007/s12666-019-01758-1. 39. Parveez B., Jamal N.A., Anuar H., Ahmad Y., Aabid A., Baig M. Microstructure and mechanical properties of metal foams fabricated via melt foaming and powder metallurgy technique: A review. Materials, 2022, vol. 15. DOI: 10.3390/ma15155302. 40. Jamal N.A., Maizatul O., Anuar H., Yusof F., Ahmad Nor Y., Khalid K., Zakaria M.N. Preliminary development of porous aluminum via powder metallurgy technique. Materialwissenschaft und Werkstoff technik, 2018, vol. 49 (4), pp. 460–466. DOI: 10.1002/mawe.201700269. Confl icts of Interest The authors declare no confl ict of interest. © 2023 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).

RkJQdWJsaXNoZXIy MTk0ODM1