Review of modern requirements for welding of pipe high-strength low-alloy steels

OBRABOTKAMETALLOV Vol. 25 No. 4 2023 58 TECHNOLOGY 4. DSTU ISO 11960:2020. Petroleum and natural gas industries – Steel pipes for use as casing and tubing for wells. Geneva, Switzerland, IOS, 2020. 5. STO Gazprom 2-4.1-228–2008. Tekhnicheskie trebovaniya k nasosno-kompressornym trubam dlya mestorozhdenii OAO «Gazprom» [Standard organization STO Gazprom 2-4.1-228–2008. Technical requirements for tubing for OAO Gazprom fi elds]. Moscow, Gazprom Publ., 2008. 32 p. 6. Davies R.J., Almond S., Ward R.S., Jackson R.B., Adams C., Worrall F., Herringshaw L.G., Gluyas J.G., Whitehead M.A. Oil and gas wells and their integrity: Implications for shale and unconventional resource exploitation. Marine and Petroleum Geology, 2014, vol. 56, pp. 239–254. DOI: 10.1016/j.marpetgeo.2014.03.001. 7. Luo J.H., Yang F.P., Wang K., Zhang L., Zhao X.W., Huo C.Y. Study of failure frequency and failure cases in oil & gas pipeline. Heat Treatment of Metals, 2015, vol. 40, S1, pp. 470–474. 8. Zhang H., Wu K., Liu X., Yang Y., Sui Y., Zhang Z. Numerical simulation method for strain capacity of girth welding joint on X80 pipeline with 1 422 mm diameter. Oil & Gas Storage and Transportation, 2020, vol. 39 (2), pp. 162–168. 9. Zhao X., Xu L., Jing H., Han Y.D., Zhao L. A strain-based fracture assessment for off shore clad pipes with ultra undermatched V groove weld joints and circumferential surface cracks under large-scale plastic strain. European Journal of Mechanics – A/Solids, 2019, vol. 74, pp. 403–416. DOI: 10.1016/j.euromechsol.2018.12.002. 10. Midawi A.R.H., Santos E.B.F., Huda N., Sinha A.K., Lazor R., Gerlich A.P. Microstructures and mechanical properties in two X80 weld metals produced using similar heat input. Journal of Materials Processing Technology, 2015, vol. 226, pp. 272–279. DOI: 10.1016/j.jmatprotec.2015.07.019. 11. Sha Q., Li D. Microstructure, mechanical properties and hydrogen induced cracking susceptibility of X80 pipeline steel with reduced Mn content. Materials Science and Engineering: A, 2013, vol. 585, pp. 214–221. DOI: 10.1016/j.msea.2013.07.055. 12. Li B., Luo M., Yang Z., Yang F., Liu H., Tang H., Zhang Z., Zhang J. Microstructure evolution of the semimacro segregation induced banded structure in high strength oil tubes during quenching and tempering treatments. Materials, 2019, vol. 12 (20), p. 3310. DOI: 10.3390/ma12203310. 13. Balanovskiy A.E., Astafyeva N.A., Kondratyev V.V., Karlina A.I. Study of mechanical properties of C-MnSi composition metal after wire-arc additive manufacturing (WAAM). CIS Iron and Steel Review, 2021, vol. 22, pp. 66–71. DOI: 10.17580/cisisr.2021.02.12. 14. Shtayger M.G., Balanovskiy A.E., Kargapoltsev S.K., Gozbenko V.E., Karlina A.I., Karlina Yu.I., Govorkov A.S., Kuznetsov B.O. Investigation of macro and micro structures of compounds of high-strength rails implemented by contact butt welding using burning-off . IOP Conference Series: Materials Science and Engineering, 2019, vol. 560 (1), p. 012190. DOI: 10.1088/1757-899X/560/1/012190. 15. Balanovskiy A.E., Astafyeva N.A., Kondratyev V.V., Karlina Yu.I. Study of impact strength of C-Mn-Si composition metal after wire-arc additive manufacturing (WAAM). CIS Iron and Steel Review, 2022, vol. 24, pp. 67–73. DOI: 10.17580/cisisr.2022.02.10. 16. Balanovsky A.E., Shtayger M.G., Kondrat’ev V.V., Karlina A.I., Govorkov A.S. Comparative analysis of structural state of welded joints rails using method of Barkhausen eff ect and ultrasound. Journal of Physics: Conference Series, 2018, vol. 1118 (1), p. 012006. DOI: 10.1088/1742-6596/1118/1/012006. 17. Zhang Q., Yuan Q., Xiong Z., Liu M., Xu G. Eff ects of Q&T parameters on phase transformation, microstructure, precipitation and mechanical properties in an oil casing steel. Physics of Metals and Metallography, 2021, vol. 122 (14), pp. 1463–1472. DOI: 10.1134/S0031918X21140180. 18. KimY.M., Kim S.K., LimY.J., Kim N.J. Eff ect of microstructure on the yield ratio and low temperature toughness of linepipe steels. ISIJ International, 2002, vol. 42 (12), pp. 1571–1577. DOI: 10.2355/isijinternational.42.1571. 19. Kolosov A.D., Gozbenko V.E., Shtayger M.G., Kargapoltsev S.K., Balanovskiy A.E., Karlina A.I., Sivtsov A.V., Nebogin S.A. Comparative evaluation of austenite grain in high-strength rail steel during welding, thermal processing and plasma surface hardening. IOP Conference Series: Materials Science and Engineering, 2019, vol. 560, p. 012185. DOI: 10.1088/1757-899X/560/1/012185. 20. BalanovskiyA.E., Shtaiger M.G., Kondratyev V.V., KarlinaA.I. Determination of rail steel structural elements via the method of atomic force microscopy. CIS Iron and Steel Review, 2022, vol. 23, pp. 86–91. DOI: 10.17580/ cisisr.2022.01.16. 21. Smirnov M.A., Pyshmintsev I.Yu. Boryakova A.N. Classifi cation of low-carbon pipe steel microstructures. Metallurgist, 2010, vol. 54 (7–8), pp. 444–454. DOI: 10.1007/s11015-010-9321-2. Translated from Metallurg, 2010, no. 7, pp. 45–51.

RkJQdWJsaXNoZXIy MTk0ODM1