Review of modern requirements for welding of pipe high-strength low-alloy steels

OBRABOTKAMETALLOV Vol. 25 No. 4 2023 technology 20. BalanovskiyA.E., Shtaiger M.G., Kondratyev V.V., KarlinaA.I. Determination of rail steel structural elements via the method of atomic force microscopy. CIS Iron and Steel Review, 2022, vol. 23, pp. 86–91. DOI: 10.17580/ cisisr.2022.01.16. 21. Smirnov M.A., Pyshmintsev I.Yu. Boryakova A.N. Classification of low-carbon pipe steel microstructures. Metallurgist, 2010, vol. 54 (7–8), pp. 444–454. DOI: 10.1007/s11015-010-9321-2. Translated from Metallurg, 2010, no. 7, pp. 45–51. 22. Heisterkamp F., Hulka K., Matrosov Yu.I., Morozov Y.D., Efron L.I., Stolyarov V.I., Chevskaya O.N. Niobiisoderzhashchie nizkolegirovannye stali [Niobium containing low alloy steels]. Moscow, Intermet Engineering Publ., 1999. 94 p. 23. Baker T.N. Microalloyed steels. Ironmaking & Steelmaking, 2016, vol. 43 (4), pp. 264–307. DOI: 10.1179/1 743281215Y.0000000063. 24. Hillenbrand H.G., Niederhoff Hauck G., Perteneder E., Wellnitz G. Procedures, considerations for welding X80 line pipe established. Oil & Gas Journal, 1997, vol. 37, pp. 47–56. 25. Morrison W.B. Microalloy steels – the beginning. Materials Science and Technology, 2009, vol. 25 (9), pp. 1066–1073. DOI: 10.1179/174328409X453299. 26. Xie G.M., Duan R.H., Xue P., Ma Z.Y., Liu H.L., Luo Z.A. Microstructure and mechanical properties of X80 pipeline steel joints by friction stir welding under various cooling conditions. Acta Metallurgica Sinica (English Letters), 2020, vol. 33, pp. 88–102. DOI: 10.1007/s40195-019-00940-0. 27. Raabe D., Sun B., Kwiatkowski Da Silva A., Gault B., Yen H.-W., Sedighiani K., Sukumar P.T., Souza Filho I.R., Katnagallu S., Jägle E., Kürnsteiner P., Kusampudi N., Stephenson L., Herbig M., Liebscher C.H., Springer H., Zaefferer S., Shah V., Wong S.-L., Baron C., Diehl M., Roters F., Ponge D. Current challenges and opportunities in microstructure-related properties of advanced high-strength steels. Metallurgical and Materials Transactions A, 2020, vol. 51, pp. 5517–5586. DOI: 10.1007/s11661-020-05947-2. 28. Yoo J.Y., Ahn S.S., Seo D.H., Song W.H., Kang K.B. New development of high grade X80 to X120 pipeline steels. Materials and Manufacturing Processes, 2011, vol. 26 (1), pp. 154–160. DOI: 10.1080/10426910903202534. 29. Moore P.L., Howse D.S., Wallach E.R. Development of Nd: YAG laser and laser/MAG hybrid welding for land pipeline applications. Welding and Cutting, 2004, vol. 56 (3), pp. 186–191. 30. Gook S., Gumenyuk A., Rethmeier M. Hybrid laser arc welding of X80 and X120 steel grade. Science and Technology of Welding and Joining, 2014, vol. 19 (1), pp. 15–24. DOI: 10.1179/1362171813Y.0000000154. 31. Turichin G., Kuznetsov M., Pozdnyakov A., Gook S., Gumenyuk A., Rethmeier M. Influence of heat input and preheating on the cooling rate, microstructure and mechanical properties at the hybrid laser-arc welding of API 5L X80 steel. Procedia CIRP, 2018, vol. 74, pp. 748–751. DOI: 10.1016/j.procir.2018.08.018. 32. Churiaque C., Chludzinski M., Porrua-Lara M., Dominguez-Abecia A., Abad-Fraga F., Sánchez-Amaya J.M. Laser hybrid butt welding of large thickness naval steel. Metals, 2019, vol. 9, p. 100. DOI: 10.3390/met9010100. 33. Keitel S., Jasnau U., Neubert J. Applications of fiber laser based deep penetration welding in shipbuilding, rail car industries and pipe welding. 4th International Symposium on High-Power Laser and their Applications, June 24–26, 2008, St. Petersburg, Russia. 34. Kah P. Overview of the exploration status of laser-arc hybrid welding processes. Reviews on Advanced Materials Science, 2012, vol. 30, pp. 112–132. 35. Waveform Control Technology®: Surface Tension Transfer®. Relatório Técnico, NX2.20 – Nov/06. Cleveland, The Lincoln Electric Company, 2006. 4 p. 36. Efimenko L.A., Ramus’ A.A. Vliyanie morfologii struktury na soprotivlenie khrupkomu razrusheniyu svarnykh soedinenii vysokoprochnykh trubnykh stalei [Effect of the morphology of structure on the resistance of welded joints of high-strength pipe steels to brittle fracture]. Metallovedenie i termicheskaya obrabotka metallov = Metal Science and Heat Treatment, 2015, no. 9 (723), pp. 41–45. 37. Efimenko L.A., Ramus’ A.A., Ponomarenko D.V., Ramus’ R.O. Relationship between structure and fractographic characteristics of micro mechanisms of welded joints fracture from high strength pipe steels. Metallurgist, 2018, vol. 62 (7), pp. 694–700. DOI: 10.1007/s11015-018-0710-2. Translated from Metallurg, 2018, no. 7, pp. 69–74. 38. Sudin V.V., Stepanov P.P., Bozhenov V.A., Kantor M.M., Efron L.E., Zharkov S.V., Chastukhin A.V. Ringinen D.A. Microstructural features of low-alloy pipeline steels that determine impact strength of welded joint heataffected zone. Metallurgist, 2021, vol. 65 (5–6), pp. 500–516. DOI: 10.1007/s11015-021-01184-z. Translated from Metallurg, 2021, no. 5, pp. 24–35. 39. Wang Y.Y., Horsley D., Cheng W., Glover A., McLamb M., Zhou J., Denys R. Tensile strain limits of girth welds with surface-breaking defects. Part II. Experimental correlation and validation. Proceedings of the 4th inter-

RkJQdWJsaXNoZXIy MTk0ODM1