Milling martensitic steel blanks obtained using additive technologies

OBRABOTKAMETALLOV Vol. 25 No. 4 2023 85 TECHNOLOGY 3. Liverani E., Fortunato A. Additive manufacturing of AISI 420 stainless steel: Process validation, defect analysis and mechanical characterization in diff erent process and post-process conditions // The International Journal of Advanced Manufacturing Technology. – 2021. – Vol. 117 (3–4). – P. 809–821. – DOI: 10.1007/ s00170-021-07639-6. 4. Ultra-high strength martensitic 420 stainless steel with high ductility / K. Saeidi, D.L. Zapata, F. Lofaj, L. Kvetkova, J. Olsen, Z. Shen, F. Akhtar // Additive Manufacturing. – 2019. – Vol. 29. – P. 100803. – DOI: 10.1016/j.addma.2019.100803. 5. In situ heat treatment in selective laser melted martensitic AISI 420 stainless steels / P. Krakhmalev, I. Yadroitsava, G. Fredriksson, I. Yadroitsev// Materials & Design. – 2015. –Vol. 87. – P. 380–385. – DOI: 10.1016/j. matdes.2015.08.045. 6. Characterizationofwirearcadditivemanufacturing 2Cr13 part: Process stability, microstructural evolution, and tensileproperties / J.Ge, J. Lin,Y. Chen,Y. Lei,H. Fu // Journal of Alloys and Compounds. – 2018. – Vol. 748. – P. 911–921. – DOI: 10.1016/j.jallcom.2018.03.222. 7. Process parameters eff ect on weld beads geometry deposited by Wire and Arc Additive Manufacturing (WAAM) / S. Manokruang, F. Vignat, M. Museau, M. Limousin // Advances on Mechanics, Design Engineering and Manufacturing III. JCM 2020. – Springer, 2021. – P. 9–14. – DOI: 10.1007/978-3-030-70566-4_3. 8. Grzesik W. Hybrid additive and subtractive manufacturing processes and systems: a review // Journal of Machine Engineering. – 2018. – Vol. 18 (4). – P. 5–24. – DOI: 10.5604/01.3001.0012.7629. 9. Eff ect of milling parameters on HSLA steel parts produced by Wire and Arc Additive Manufacturing (WAAM) / J.G. Lopes, C.M. Machado, V.R. Duarte, T.A. Rodrigues, T.G. Santos, J.P. Oliveira // Journal of Manufacturing Processes. – 2020. – Vol. 59. – P. 739– 749. – DOI: 10.1016/j.jmapro.2020.10.007. 10. New observations on wear characteristics of solid Al2O3/Si3N4 ceramic tool in high speed milling of additive manufactured Ti6Al4V / J. Dang, H. Zhang, W. Ming, Q. An, M. Chen // Ceramics International. – 2020. – Vol. 46 (5). – P. 5876–5886. – DOI: 10.1016/j. ceramint.2019.11.039. 11. Analysis of tool wear in cryogenic machining of additive manufactured Ti6Al4V alloy / A. Bordin, S. Bruschi, A. Ghiotti, P.F. Bariani // Wear. – 2015. – Vol. 328–329. – P. 89–99. – DOI: 10.1016/j. wear.2015.01.030. 12. Infl uence of fi nish machining on the surface integrity of Ti6Al4Vproduced by selective laser melting / S. Milton, A. Morandeau, F. Chalon, R. Leroy // Procedia CIRP. – 2016. – Vol. 45. – P. 127–130. – DOI: 10.1016/j. procir.2016.02.340. 13. Keist J.S., Palmer T.A. Development of strengthhardness relationships in additively manufactured titanium alloys // Materials Science and Engineering:A. – 2017. – Vol. 693. – P. 214–224. – DOI: 10.1016/j. msea.2017.03.102. 14. The eff ect of fi nish-milling operation on surface quality and wear resistance of Inconel 625 produced by selectivelasermeltingadditivemanufacturing/E.Tascioglu. Yu. Kaynak, Ö. Poyraz. A. Orhangül, S. Ören // Advanced Surface Enhancement. INCASE 2019. – Springer, 2020. – P. 263–272. – DOI: 10.1007/978-981-15-0054-1_27. 15. Cutting forces analysis in additive manufactured AISI H13 alloy / F. Montevecchi, N. Grossi, H. Takagi, A. Scippa, H. Sasahara, G. Campatelli // Procedia CIRP. – 2016. – Vol. 46. – P. 476–479. 16. Study on machinability of additively manufactured and conventional titanium alloys in micromilling process / F. Hojati, A. Daneshi, B. Soltani, B. Azarhoushang, D. Biermann // Precision Engineering. – 2020. – Vol. 62. – P. 1–9. – DOI: 10.1016/j. precisioneng.2019.11.002. 17. Gong Y., Li P. Analysis of tool wear performance and surface quality in post milling of additive manufactured 316L stainless steel // Journal of Mechanical Science and Technology. – 2019. – Vol. 33. – P. 2387–2395. – DOI: 10.1007/s12206-019-0237-x. 18. Ni Ch., Zhu L., Yang Zh. Comparative investigation of tool wear mechanism and corresponding machined surface characterization in feed-direction ultrasonic vibration assisted milling of Ti–6Al–4V from dynamic view // Wear. – 2019. – Vol. 436. – P. 203006. – DOI: 10.1016/j.wear.2019.203006. 19. Xiong X., Haiou Z., Guilan W. A new method of direct metal prototyping: hybrid plasma deposition and milling//RapidPrototypingJournal.–2008.–Vol.14(1). – P. 53–56. – DOI: 10.1108/13552540810841562. 20. SLS setup and its working procedure / R. Ahmetshin, V. Fedorov, K. Kostikov, N. Martyushev, V. Ovchinnikov, A. Rasin, A. Yakovlev // Key Engineering Materials. – 2016. – Vol. 685. – P. 477–481. – DOI: 10.4028/www.scientifi c.net/KEM.685.477. 21. Martyushev N., Petrenko Yu. Eff ects of crystallization conditions on lead tin bronze properties // Advanced Materials Research. – 2014. – Vol. 880. – P. 174–178. – DOI: 10.4028/www.scientifi c.net/AMR. 880.174. 22. Thermal pulse processing of blanks of smallsized parts made of beryllium bronze and 29 NK alloy / M.E. Isametova, N.V. Martyushev, Y.I. Karlina, R.V. Kononenko, V.Yu. Skeeba, B.N. Absadykov // Materials. – 2022. – Vol. 15. – P. 6682. – DOI: 10.3390/ ma15196682. 23. Provision of rational parameters for the turning mode of small-sized parts made of the 29 NK alloy and

RkJQdWJsaXNoZXIy MTk0ODM1