Milling martensitic steel blanks obtained using additive technologies

OBRABOTKAMETALLOV Vol. 25 No. 4 2023 88 TECHNOLOGY 3. Liverani E., Fortunato A. Additive manufacturing of AISI 420 stainless steel: Process validation, defect analysis and mechanical characterization in diff erent process and post-process conditions. The International Journal of Advanced Manufacturing Technology, 2021, vol. 117 (3–4), pp. 809–821. DOI: 10.1007/s00170-021-07639-6. 4. Saeidi K., Zapata D.L., Lofaj F., Kvetkova L., Olsen J., Shen Z., Akhtar F. Ultra-high strength martensitic 420 stainless steel with high ductility. Additive Manufacturing, 2019, vol. 29, p. 100803. DOI: 10.1016/j. addma.2019.100803. 5. Krakhmalev P., Yadroitsava I., Fredriksson G., Yadroitsev I. In situ heat treatment in selective laser melted martensitic AISI 420 stainless steels. Materials & Design, 2015, vol. 87, pp. 380–385. DOI: 10.1016/j. matdes.2015.08.045. 6. Ge J., Lin J., Chen Y., Lei Y., Fu H. Characterization of wire arc additive manufacturing 2Cr13 part: Process stability, microstructural evolution, and tensile properties. Journal of Alloys and Compounds, 2018, vol. 748, pp. 911– 921. DOI: 10.1016/j.jallcom.2018.03.222. 7. Manokruang S., Vignat F., Museau M., Limousin M. Process parameters eff ect on weld beads geometry deposited by Wire and Arc Additive Manufacturing (WAAM). Advances on Mechanics, Design Engineering and Manufacturing III. JCM 2020. Springer, 2021, pp. 9–14. DOI: 10.1007/978-3-030-70566-4_3. 8. GrzesikW. Hybrid additive and subtractive manufacturing processes and systems: a review. Journal of Machine Engineering, 2018, vol. 18 (4), pp. 5–24. DOI: 10.5604/01.3001.0012.7629. 9. Lopes J.G., Machado C.M., Duarte V.R., Rodrigues T.A., Santos T.G., Oliveira J.P. Eff ect of milling parameters on HSLA steel parts produced by Wire and Arc Additive Manufacturing (WAAM). Journal of Manufacturing Processes, 2020, vol. 59, pp. 739–749. DOI: 10.1016/j.jmapro.2020.10.007. 10. Dang J., Zhang H., Ming W., An Q., Chen M. New observations on wear characteristics of solid Al2O3/Si3N4 ceramic tool in high speed milling of additive manufactured Ti6Al4V. Ceramics International, 2020, vol. 46 (5), pp. 5876–5886. DOI: 10.1016/j.ceramint.2019.11.039. 11. Bordin A., Bruschi S., Ghiotti A., Bariani P.F. Analysis of tool wear in cryogenic machining of additive manufactured Ti6Al4V alloy. Wear, 2015, vol. 328–329, pp. 89–99. DOI: 10.1016/j.wear.2015.01.030. 12. Milton S., MorandeauA., Chalon F., Leroy R. Infl uence of fi nish machining on the surface integrity of Ti6Al4V produced by selective laser melting. Procedia CIRP, 2016, vol. 45, pp. 127–130. DOI: 10.1016/j.procir.2016.02.340. 13. Keist J.S., Palmer T.A. Development of strength-hardness relationships in additively manufactured titanium alloys. Materials Science and Engineering: A, 2017, vol. 693, pp. 214–224. DOI: 10.1016/j.msea.2017.03.102. 14. Tascioglu E., Kaynak Yu., Poyraz Ö., Orhangül A., Ören S. The eff ect of fi nish-milling operation on surface quality and wear resistance of Inconel 625 produced by selective laser melting additive manufacturing. Advanced Surface Enhancement. INCASE 2019. Springer, 2020, pp. 263–272. DOI: 10.1007/978-981-15-0054-1_27. 15. Montevecchi F., Grossi N., Takagi H., Scippa A., Sasahara H., Campatelli G. Cutting forces analysis in additive manufactured AISI H13 alloy. Procedia CIRP, 2016, vol. 46, pp. 476–479. 16. Hojati F., Daneshi A., Soltani B., Azarhoushang B., Biermann D. Study on machinability of additively manufactured and conventional titanium alloys in micro-milling process. Precision Engineering, 2020, vol. 62, pp. 1–9. DOI: 10.1016/j.precisioneng.2019.11.002. 17. Gong Y., Li P. Analysis of tool wear performance and surface quality in post milling of additive manufactured 316L stainless steel. Journal of Mechanical Science and Technology, 2019, vol. 33, pp. 2387–2395. DOI: 10.1007/ s12206-019-0237-x. 18. Ni Ch., Zhu L., Yang Zh. Comparative investigation of tool wear mechanism and corresponding machined surface characterization in feed-direction ultrasonic vibration assisted milling of Ti–6Al–4V from dynamic view. Wear, 2019, vol. 436, p. 203006. DOI: 10.1016/j.wear.2019.203006. 19. Xiong X., Haiou Z., Guilan W. A new method of direct metal prototyping: hybrid plasma deposition and milling. Rapid Prototyping Journal, 2008, vol. 14 (1), pp. 53–56. DOI: 10.1108/13552540810841562. 20. Ahmetshin R., Fedorov V., Kostikov K., Martyushev N., Ovchinnikov V., Rasin A., Yakovlev A. SLS setup and its working procedure. Key Engineering Materials, 2016, vol. 685, pp. 477–481. DOI: 10.4028/www.scientifi c. net/KEM.685.477. 21. Martyushev N., Petrenko Yu. Eff ects of crystallization conditions on lead tin bronze properties. Advanced Materials Research, 2014, vol. 880, pp. 174–178. DOI: 10.4028/www.scientifi c.net/AMR.880.174. 22. Isametova M.E., Martyushev N.V., Karlina Y.I., Kononenko R.V., Skeeba V.Yu., Absadykov B.N. Thermal pulse processing of blanks of small-sized parts made of beryllium bronze and 29 NK alloy. Materials, 2022, vol. 15, p. 6682. DOI: 10.3390/ma15196682.

RkJQdWJsaXNoZXIy MTk0ODM1