Ultrasonic vibration-assisted hard turning of AISI 52100 steel: comparative evaluation and modeling using dimensional analysis

OBRABOTKAMETALLOV MATERIAL SCIENCE Том 23 № 3 2021 EQUIPMEN . INSTRUM TS Vol. 5 No. 4 2023 However, this effect is less prominent in UVAHT due to intermittent contact of the tool with the workpiece, which allows the tool to cool naturally and hence, lowers tool wear. 2. UVAHT consumes negligibly higher power than CT. Additional power is required in UVAHT to drive the ultrasonic generator, which is not necessary in CT. 3. The tool wear and the power consumption increase with the cutting speed, depth of cut, and feed. However, this effect is more significant in CT than UVAHT. 4. The power consumption increases with the cutting speed, vibration frequency, and amplitude. However, an increase in the power consumption is more prominent with the cutting speed followed by vibration frequency, and amplitude. 5. The flank wear increases with the cutting speed and vibration amplitude and decreases with the frequency of vibration. References 1. Babitsky V.I., Kalashnikov A.N., Meadows A., Wijesundara A.A.H.P. Ultrasonically assisted turning of aviation materials. Journal of Materials Processing Technology, 2003, vol. 132, pp. 157–167. DOI: 10.1016/s09240136(02)00844-0. 2. Babitsky V.I., Mitrofanov A.V., Silberschmidt V.V. Ultrasonically assisted turning of aviation materials: simulations and experimental study. Ultrasonics, 2004, vol. 42, pp. 81–86. DOI: 10.1016/j.ultras.2004.02.001. 3. Vivekananda K., Arka G.N., Sahoo S.K. Design and analysis of ultrasonic vibratory tool (UVT) using FEM, and experimental study on ultrasonic vibration-assisted turning (UAT). Procedia Engineering, 2014, vol. 97, pp. 1178– 1186. DOI: 10.1016/j.proeng.2014.12.396. 4. Liu Y., Li J., Zhang L. Effects of ultrasonic vibration on cutting forces and machined surface quality in turning of AISI 1045 steel. International Journal of Advanced Manufacturing Technology, 2019, vol. 101, pp. 1137–1147. DOI: 10.1038/s41598-022-21236-x. 5. Muhammad R., Maurotto A., Roy A., Silberschmidt V.V. Analysis of forces in vibro-impact and hot vibroimpact turning of advanced alloys. Applied Mechanics and Materials, 2011, vol. 70, pp. 315–320. DOI: 10.4028/ www.scientific.net/AMM.70.315. 6. Lotfi M., Amini S., Akbari J. Surface integrity and microstructure changes in 3D elliptical ultrasonic assisted turning of Ti–6Al–4V: FEM and experimental examination. Tribology International, 2020, vol. 151, p. 106492. DOI: 10.1016/j.triboint.2020.106492. 7. Celaya A., Luis N.N.L., Francisco J.C., Lamikiz A. Ultrasonic Assisted Turning of mild steels. International Journal of Materials and Product Technology, 2010, vol. 37. DOI: 10.1504/IJMPT.2010.029459. 8. Jiao F., Liu X., Zhao C., Zhang X. Experimental study on the surface micro-geometrical characteristics of quenched steel in Ultrasonic Assisted Turning. Advanced Materials Research, 2011, vol. 189–193, pp. 4059–4063. DOI: 10.4028/www.scientific.net/AMR.189-193.4059. 9. MaurottoA., Muhammad R., RoyA., Babitsky V.I., Silberschmidt V.V. Comparing machinability of Ti-15-3-33 and Ni-625 alloys in UAT. Procedia CIRP, 2012, vol. 1, pp. 330–335. DOI: 10.1016/j.procir.2012.04.059. 10. Zou P., Xu Y., He Y., Chen M., Wu H. Experimental investigation of ultrasonic vibration assisted turning of 304 austenitic stainless steel. Shock and Vibration, 2015, art. 817598. DOI: 10.1155/2015/817598. 11. Kumar J., Khamba J.S. Modelling the material removal rate in ultrasonic machining of titanium using dimensional analysis. International Journal of Advanced Manufacturing Technology, 2010, vol. 48, pp. 103–119. DOI: 10.1007/s00170-009-2287-1. 12. Kugaevskii S.S., Ashikhmin V.N. Using local coordinate systems for dimensional analysis in the machining. Proceedings of the 4th International Conference on Industrial Engineering. ISIE 2018. Springer, 2018, pp. 301–309. DOI: 10.1007/978-3-319-95630-5_33. 13. Skelton R.C. Turning with an oscillating tool. International Journal of Machine Tool Design and Research, 1968, vol. 8, pp. 239–259. DOI: 10.1016/0020-7357(68)90014-0. 14. MitrofanovA.V., BabitskyV.I., SilberschmidtV.V. Thermomechanical finite element simulations of ultrasonically assisted turning. Computational Materials Science, 2005, vol. 32, pp. 463–471. DOI: 10.1016/j.commatsci.2004.09.019. 15. Ghule G.S., Sanap S. Ultrasonic vibrations assisted turning (UAT): A review. Advances in Engineering Design: Select proceedings of FLAME 2020. Springer, 2021, pp. 275–285. DOI: 10.1007/978-981-33-4684-0_28. 16. Nath C., Rahman M., Andrew S.S.K. A study on ultrasonic vibration cutting of low alloy steel. Journal of Materials Processing Technology, 2007, pp. 159–165. DOI: 10.1016/j.jmatprotec.2007.04.047.

RkJQdWJsaXNoZXIy MTk0ODM1