Influence of internal stresses on the intensity of corrosion processes in structural steel

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 25 No. 4 2023 6. State Standard 9.008–85. Unified system of corrosion and ageing protection. Metals and alloys. Methods for determination of corrosion and corrosion resistance indices. Moscow, Standards Publ., 2004. 17 p. (In Russian). 7. Baginskii A.G., ed. Materialovedenie [Materials science]. Tomsk, Tomsk Polytechnic University Publ., 2015. 104 p. 8. Reformatskaya I.I., Rodionova I.G., Beilin Yu.A., Nisel’son L.A., Podobaev A.N. Rol’ nemetallicheskikh vklyuchenii i mikrostruktury v protsesse lokal’noi korrozii uglerodistykh i nizkolegirovannykh stalei [The effect of nonmetal inclusions and microstructure on local corrosion of carbon and low-alloyed steels]. Zashchita metallov = Protection of Metals, 2004, vol. 40, no. 5, pp. 498–504. (In Russian). 9. Rodionova I.G., Baklanova O.N., Zaitsev A.I. O roli nemetallicheskikh vklyuchenii v uskorenii protsessov lokal’noi korrozii neftepromyslovykh truboprovodov iz uglerodistykh i nizkolegirovannykh stalei [On the role of nonmetallic inclusions in the acceleration of local corrosion of oil-field pipelines made of carbon and low-alloy steels]. Metally = Russian Metallurgy (Metally), 2004, no. 5, pp. 13–19. (In Russian). 10. Sokolov R.A., Novikov V.F., Muratov K.R., Venediktov A.N. Opredelenie vzaimosvyazi faktora raznozernistosti i skorosti korrozii konstruktsionnoi stali [Determination of the relationship between the factor of grain size factor and the corrosion rate of structural steel]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2020, vol. 22, no. 3, pp. 106–125. DOI: 10.17212/1994-63092020-22.3-106-125. 11. Sokolov R.A., Novikov V.F., Muratov K.R., Venediktov A.N. Otsenka vliyaniya dispersnosti struktury stali na magnitnye i mekhanicheskie svoistva [Assessment of the effect of the steels structure dispersion on its magnetic and mechanical properties]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2021, vol. 23, no. 4, pp. 93–110. DOI: 10.17212/1994-6309-2021-23.4-93-110. 12. Ueji R., Tsuchida N., Terada D., Tsuji N., Tanaka Yu., Takemura A., Kunishige K. Tensile properties and twinning of high-manganese austenitic steel with fine-grained structure. Scripta Materialia, 2008, vol. 59, iss. 9, pp. 963–966. DOI: 10.1016/j.scriptamat.2008.06.050. 13. Babicheva R.I., Semenov A.S., Dmitriev S.V., Zhou K. Effect of grain boundary segregations on martensitic transformation temperatures in NiTi bi-crystals. Letters on Materials, 2019, vol. 9 (2), pp. 162–167. DOI: 10.22226/2410-3535-2019-2-162-167. 14. Li M., Kirk M.A., Baldo P.M., Xu D., Wirth B.D. Investigation of the evolution of defects by the TEMmethod with ion irradiation in situ and coordinated modeling. Philosophical Magazine, 2012, vol. 92 (16), pp. 2048–2078. DOI: 10.1080/14786435.2012.662601. 15. Sokolov R.A., Novikov V.F., Venediktov A.N., Muratov K.R. Influence of surface treatment of construction steels on determination of internal stresses and grain sizes using X-ray diffractometry method. Materials Today: Proceedings, 2019, vol. 19 (5), pp. 2584–2585. DOI: 10.1016/j.matpr.2019.09.015. 16. Sokolov R.A., Novikov V.F., Kovenskij I.M., Muratov K.R., Venediktov A.N., Chaugarova L.Z. Vliyanie termicheskoi obrabotki na obrazovanie soedineniya MnS v nizkouglerodistoi konstruktsionnoi stali 09G2S [The effect of heat treatment on the formation of MnS compound in low-carbon structural steel 09Mn2Si]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2022, vol. 24, no. 4, pp. 113–126. DOI: 10.17212/1994-6309-2022-24.4-113-126. 17. Abuku S. Magnetics studies of residual stress in iron and steel induced by uniaxial deformation. Japanese Journal of Applied Physics, 1977, vol. 16 (7), pp. 1161–1170. DOI: 10.1143/JJAP.16.1161. 18. StashkovA.N., Schapova E.A., NichipurukA.P., KorolevA.V. Magnetic incremental permeability as indicator of compression stress in low-carbon steel. NDT & E International, 2021, vol. 118, p. 102398. DOI: 10.1016/j. ndteint.2020.102398. 19. Zhang K., Holmedal B., Hopperstad O., Dumoulin S. Modelling the plastic anisotropy of aluminum alloy 3103 sheets by polycrystal plasticity. Modelling and Simulation in Materials Science and Engineering, 2014, vol. 22 (7), p. 075015. DOI: 10.1088/0965-0393/22/7/075015. 20. Zhao Q., Holmedal B., Li Y. Influence of dispersoids on microstructure evolution and work hardening of aluminium alloys during tension and cold rolling. Philosophical Magazine, 2013, vol. 93 (22), pp. 2995–3011. DOI : 10.1080/14786435.2013.794315. 21. Holmedal B., Houtte P.V., An Y. A crystal plasticity model for strain-path changes in metals. International Journal of Plasticity, 2008, vol. 24 (8), pp. 1360–1379. 22. Juul Jensen D., Hansen N. Flow stress anisotropy in aluminium. Acta Metallurgica et Materialia, 1990, vol. 38 (8), pp. 1369–1380. DOI: 10.1016/0956-7151(90)90105-P.

RkJQdWJsaXNoZXIy MTk0ODM1