Elastic modulus and hardness of Ti alloy obtained by wire-feed electron-beam additive manufacturing

OBRABOTKAMETALLOV Vol. 25 No. 4 2023 197 MATERIAL SCIENCE Materials Research. – 2016. – Vol. 46 (1). – P. 63–91. – DOI: 10.1146/annurev-matsci-070115-031816. 39. Liu S., Shin Y.C. Additive manufacturing of Ti-6Al-4V alloy: A review // Materials & Design. – 2019. – Vol. 164. – P. 107552. – DOI: 10.1016/j.matdes.2018.107552. 40. Ho W.F., Ju C.P., Chern Lin J.H. Structure and properties of cast binary Ti–Mo alloys // Biomaterials. – 1999. – Vol. 20 (22). – P. 2115–2122. – DOI: 10.1016/ S0142-9612(99)00114-3. 41. Microstructure and compressive behavior of Ti-6Al-4V alloy built by electron beam free-form fabrication / V.A. Klimenov, V.V. Fedorov, M.S. Slobodyan, N.S. Pushilina, I.L. Strelkova, A.A. Klopotov, A.V. Batranin // Journal of Materials Engineering and Performance. – 2020. – Vol. 29 (11). – P. 7710–7721. – DOI: 10.1007/s11665-020-05223-9. 42. Zardiackas L.D., Mitchell D.W., Disegi J.A. Characterization of Ti-15Mo beta titanium alloy for orthopaedic implant applications // Medical Applications of Titanium and Its Alloys: The Material and Biological Issues. – ASTM, 1996. – P. 60–75. – DOI: 10.1520/ stp16070s. – (ASTM special technical publication; 1272). 43. Majumdar P., Singh S.B., Chakraborty M. Elastic modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques – A comparative study // Materials Science and Engineering: A. – 2008. – Vol. 489 (1–2). – P. 419–425. – DOI: 10.1016/j. msea.2007.12.029. 44. Справочник металлиста. В 5 т. Т. 2 / под ред. А.Г. Рахштадта и В.А. Брострема. – Изд. 3-е, перераб. – М.: Машиностроение, 1976. – 720 с. 45. Simonelli M., Tse Y.Y., Tuck C. Eff ect of the build orientation on the mechanical properties and fracture modes of SLM Ti–6Al–4V // Materials Science and Engineering: A. – 2014. – Vol. 616. – P. 1–11. – DOI: 10.1016/j.msea.2014.07.086. 46. Keist J.S., Palmer T.A. Role of geometry on properties of additively manufactured Ti-6Al-4V structures fabricated using laser based directed energy deposition // Materials & Design. – 2016. – Vol. 106. – P. 482–494. – DOI: 10.1016/j.matdes.2016.05.045. 47. Shunmugavel M., Polishetty A., Littlefair G. Microstructure and mechanical properties of wrought and additive manufactured Ti-6Al-4V cylindrical bars // Procedia Technology. – 2015. – Vol. 20. – P. 231–236. – DOI: 10.1016/j.protcy.2015.07.037. 48. Vickers hardness of cast commercially pure titanium and Ti-6Al-4V alloy submitted to heat treatments / S.S. daRocha, G.L.Adabo, G.E.P. Henriques, M.A.d.A. Nóbilo // Brazilian Dental Journal. – 2006. – Vol. 17 (2). – P. 126–129. – DOI: 10.1590/s010364402006000200008. 49. Additive manufactured Ti-6Al-4V using welding wire: Comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifi cations / E. Brandl, B. Baufeld, C. Leyens, R. Gault // Physics Procedia. – 2010. – Vol. 5. – P. 595– 606. – DOI: 10.1016/j.phpro.2010.08.087. 50. Eff ects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM) / H. Galarraga, D.A. Lados, R.R. Dehoff , M.M. Kirka, P. Nandwana // Additive Manufacturing. – 2016. – Vol. 10. – P. 47–57. – DOI: 10.1016/j.addma.2016.02.003. Конфликт интересов Авторы заявляют об отсутствии конфликта интересов. © 2023 Авторы. Издательство Новосибирского государственного технического университета. Эта статья доступна по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная (https://creativecommons.org/licenses/by/4.0).

RkJQdWJsaXNoZXIy MTk0ODM1