Elastic modulus and hardness of Ti alloy obtained by wire-feed electron-beam additive manufacturing

OBRABOTKAMETALLOV Vol. 25 No. 4 2023 200 MATERIAL SCIENCE 21. Zolotorevskii V.S. Mekhanicheskie svoistva metallov [Mechanical properties of metals]. 3rd ed.Moscow, MISIS Publ., 1998. 400 p. 22. Fougere G.E., Riester L., Ferber M., Weertman J.R., Siegel R.W. Young’s modulus of nanocrystalline Fe measuredbynanoindentation. Materials ScienceandEngineering:A, 1995, vol. 204 (1–2), pp. 1–6.DOI: 10.1016/09215093(95)09927-1. 23. Noskova N.I., Mulyukov R.R. Submikrokristallicheskie i nanokristallicheskie metally i splavy [Submicrocrystalline and nanocrystalline metals and alloys]. Ekaterinburg, UrO RAN Publ., 2003. 279 p. 24. Lutfullin R.Ya., Trofi mov E.A., Kashaev R.M., Sitdikov V.D., Lutfullin T.R. Young’s modulus of titanium alloy VT6S and its structural sensitivity. Letters on Materials, 2017, vol. 7 (1), pp. 12–16. DOI: 10.22226/24103535-2017-1-12-16. 25. Sumner D.R., Turner T.M., Igloria R., Urban R.M., Galante J.O. Functional adaptation and ingrowth of bone vary as a function of hip implant stiff ness. Journal of Biomechanics, 1998, vol. 31 (10), pp. 909–917. DOI: 10.1016/ S0021-9290(98)00096-7. 26. Zhang L., Chen L. A review on biomedical titanium alloys: Recent progress and prospect. Advanced Engineering Materials, 2019, vol. 21 (4), p. 1801215. DOI: 10.1002/adem.201801215. 27. Wang X., Gong X., Chou K. Scanning speed eff ect on mechanical properties of Ti-6Al-4V alloy processed by electron beam additive manufacturing. Procedia Manufacturing, 2015, vol. 1, pp. 287–295. DOI: 10.1016/j. promfg.2015.09.026. 28. Savchenko N.L., Vorontsov A.V., Utyaganova V.R., Eliseev A.A., Rubtsov V.E., Kolubaev E.A. Osobennosti strukturno-fazovogo sostoyaniya splava Ti-6Al-4V pri formirovanii izdelii s ispol’zovaniem elektronno-luchevoi provolochnoi additivnoi tekhnologii [Features of the structural-phase state of the alloy Ti-6Al-4V in the formation of products using wire-feed electron beam additive manufacturing]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2018, vol. 20, no. 4, pp. 60–71. DOI: 10.17212/1994-63092018-20.4-60-71. 29. Osipovich K., Kalashnikov K., Chumaevskii A., Gurianov D., Kalashnikova T., Vorontsov A., Zykova A., Utyaganova V., Panfi lov A., Nikolaeva A., Dobrovolskii A., Rubtsov V., Kolubaev E. Wire-feed electron beam additive manufacturing: A review. Metals, 2023, vol. 13 (2), p. 279. DOI: 10.3390/met13020279. 30. Pushilina N.S., Klimenov V.A., Cherepanov R.O., Kashkarov E.B., Fedorov V.V., Syrtanov M.S., Lider A.M., Laptev R.S. Beam current eff ect on microstructure and properties of electron-beam-melted Ti-6Al-4V alloy. Journal of Materials Engineering and Performance, 2019, vol. 28 (10), pp. 6165–6173. DOI: 10.1007/s11665-019-04344-0. 31. Okulov I.V., Geslin P.-A., Soldatov I.V., Ovri H., Joo S.-H., Kato H. Anomalously low modulus of the interpenetrating-phase composite of Fe and Mg obtained by liquid metal dealloying. Scripta Materialia, 2019, vol. 163, pp. 133–136. DOI: 10.1016/j.scriptamat.2019.01.017. 32. Belosludtsev T.N., Kotolomov A.Yu., Nastich S.Yu., Lopatkin V.A., Shipilov A.V., Kuranov A.Ye., Yaremenko O.B. Opredelenie mekhanicheskikh svoistv metalla kol’tsevykh svarnykh soedinenii i osnovnogo metalla trub metodom instrumental’nogo indentirovaniya [Determining mechanical properties of circular welded joint metal and pipe base metal using the instrumented indentation method]. Gazovaya promyshlennost’ = GAS Industry of Russia, 2021, no. S3 (823), pp. 26–36. (In Russian). 33. Yaremenko O.B., Kuranov A.E., Vasiltsov S.Yu. [Instrumental indentation as a non-destructive method for evaluating the mechanical characteristics of structural materials]. Zhivuchest’ i konstruktsionnoe materialovedenie (ZhivKoM – 2020) [Survivability and Structural MaterialsScience (SSMS-2020)]. Moscow, 2020, pp. 274–278. (In Russian). 34. Klimenov V., Kolubaev E., Klopotov A., Chumaevskii A., Ustinov A., Strelkova I., Rubtsov V., Gurianov D., Han Z., Nikonov S., Batranin A., Khimich M. Infl uence of the coarse grain structure of a titanium alloy Ti-4Al-3V formed by wire-feed electron beam additive manufacturing on strain inhomogeneities and fracture. Materials, 2023, vol. 16 (11), p. 3901. DOI: 10.3390/ma16113901. 35. ASTM E494-15. Standard practice for measuring ultrasonic velocity in materials. ASTM International, 2015. 36. Lee J.-S., Jang J., Lee B.-W., Choi Y., Lee S.G., Kwon D.An instrumented indentation technique for estimating fracture toughness of ductile materials: A critical indentation energy model based on continuum damage mechanics. Acta Materialia, 2006, vol. 54 (4), pp. 1101–1109. DOI: 10.1016/j.actamat.2005.10.033. 37. Rafi H.K., Karthik N.V., Gong H., Starr T.L., Stucker B.E. Microstructures and mechanical properties of Ti6Al-4V parts fabricated by selective laser melting and electron beam melting. Journal of Materials Engineering and Performance, 2013, vol. 22 (12), pp. 3872–3883. DOI: 10.1007/s11665-013-0658-0.

RkJQdWJsaXNoZXIy MTk0ODM1