Elastic modulus and hardness of Ti alloy obtained by wire-feed electron-beam additive manufacturing

OBRABOTKAMETALLOV Vol. 25 No. 4 2023 201 MATERIAL SCIENCE 38. Collins P.C., Brice D.A., Samimi P., Ghamarian I., Fraser H.L. Microstructural control of additively manufactured metallic materials. Annual Review of Materials Research, 2016, vol. 46 (1), pp. 63–91. DOI: 10.1146/ annurev-matsci-070115-031816. 39. Liu S., Shin Y.C. Additive manufacturing of Ti-6Al-4V alloy: A review. Materials & Design, 2019, vol. 164, p. 107552. DOI: 10.1016/j.matdes.2018.107552. 40. Ho W.F., Ju C.P., Chern Lin J.H. Structure and properties of cast binary Ti–Mo alloys. Biomaterials, 1999, vol. 20 (22), pp. 2115–2122. DOI: 10.1016/S0142-9612(99)00114-3. 41. Klimenov V.A., Fedorov V.V., Slobodyan M.S., Pushilina N.S., Strelkova I.L., Klopotov A.A., Batranin A.V. Microstructure and compressive behavior of Ti-6Al-4V alloy built by electron beam free-form fabrication. Journal of Materials Engineering and Performance, 2020, vol. 29 (11), pp. 7710–7721. DOI: 10.1007/s11665-020-05223-9. 42. Zardiackas L.D., Mitchell D.W., Disegi J.A. Characterization of Ti-15Mo beta titanium alloy for orthopaedic implant applications. Medical Applications of Titanium and Its Alloys: The Material and Biological Issues. ASTM, 1996, pp. 60–75. DOI: 10.1520/stp16070s. 43. Majumdar P., Singh S.B., Chakraborty M. Elastic modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques – A comparative study. Materials Science and Engineering: A, 2008, vol. 489 (1–2), pp. 419–425. DOI: 10.1016/j.msea.2007.12.029. 44. Rakhshtadt A.G., Brostrem V.A., eds. Spravochnik metallista. V 5 t. T. 2 [Handbook of metalworker. In 5 vols. Vol. 2]. 3rd ed., rev. Moscow, Mashinostroenie Publ., 1976. 720 p. 45. Simonelli M., Tse Y.Y., Tuck C. Eff ect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V. Materials Science and Engineering: A, 2014, vol. 616, pp. 1–11. DOI: 10.1016/j. msea.2014.07.086. 46. Keist J.S., Palmer T.A. Role of geometry on properties of additively manufactured Ti-6Al-4V structures fabricated using laser based directed energy deposition. Materials & Design, 2016, vol. 106, pp. 482–494. DOI: 10.1016/j.matdes.2016.05.045. 47. Shunmugavel M., Polishetty A., Littlefair G. Microstructure and mechanical properties of wrought and additive manufactured Ti-6Al-4V cylindrical bars. Procedia Technology, 2015, vol. 20, pp. 231–236. DOI: 10.1016/j. protcy.2015.07.037. 48. Da Rocha S.S., Adabo G.L., Henriques G.E.P., Nóbilo M.A.d.A. Vickers hardness of cast commercially pure titanium and Ti-6Al-4V alloy submitted to heat treatments. Brazilian Dental Journal, 2006, vol. 17 (2), pp. 126–129. DOI: 10.1590/s0103-64402006000200008. 49. Brandl E., Baufeld B., Leyens C., Gault R. Additive manufactured Ti-6Al-4V using welding wire: Comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifi cations. Physics Procedia, 2010, vol. 5, pp. 595–606. DOI: 10.1016/j.phpro.2010.08.087. 50. Galarraga H., Lados D.A., Dehoff R.R., Kirka M.M., Nandwana P. Eff ects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM). Additive Manufacturing, 2016, vol. 10, pp. 47–57. DOI: 10.1016/j.addma.2016.02.003. Confl icts of Interest The authors declare no confl ict of interest. © 2023 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).

RkJQdWJsaXNoZXIy MTk0ODM1