Elastic modulus and hardness of Ti alloy obtained by wire-feed electron-beam additive manufacturing

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 25 No. 4 2023 5. Murr L.E., Esquivel E.V., Quinones S.A., Gaytan S.M., Lopez M.I., Martinez E.Y., Medina F., Hernandez D.H., Martinez E., Martinez J.L., Stafford S.W., Brown D.K., Hoppe T., MeyersW., Lindhe U., Wicker R.B. Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V. Materials Characterization, 2009, vol. 60 (2), pp. 96–105. DOI: 10.1016/j.matchar.2008.07.006. 6. Facchini L., Magalini E., Robotti P., Molinari A. Microstructure and mechanical properties of Ti‐6Al‐4V produced by electron beam melting of pre‐alloyed powder. Rapid Prototyping Journal, 2009, vol. 15 (3), pp. 171– 178. DOI: 10.1108/13552540910960262. 7. Gong X., Lydon J., Cooper K., Chou K. Beam speed effects on Ti–6Al–4V microstructures in electron beam additive manufacturing. Journal of Materials Research, 2014, vol. 29 (17), pp. 1951–1959. DOI: 10.1557/ jmr.2014.125. 8. Pushilina N., Stepanova E., Stepanov A., Syrtanov M. Surface modification of the EBM Ti-6Al-4V alloy by pulsed ion beam. Metals, 2021, vol. 11 (3), p. 512. DOI: 10.3390/met11030512. 9. Fedorov V.V., Rygin A.V., Klimenov V.A., Martyushev N.V., Klopotov A.A., Strelkova I.L., Matrenin S.V., Batranin A.V., Deryusheva V.N. Strukturnye i mekhanicheskie svoistva nerzhaveyushchei stali, sformirovannoi v usloviyakh posloinogo splavleniya provoloki elektronnym luchom [Structural and mechanical properties of stainless steel formed under conditions of layer-by-layer fusion of a wire by an electron beam]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2021, vol. 23, no. 4, pp. 111–124. DOI: 10.17212/1994-6309-2021-23.4-111-124. 10. Suo H., Chen Z., Liu J., Gong S., Xiao J. Microstructure and mechanical properties of Ti-6Al-4V by electron beam rapid manufacturing. Rare Metal Materials and Engineering, 2014, vol. 43 (4), pp. 780–785. DOI: 10.1016/ s1875-5372(14)60083-7. 11. ASTMD2845-08. Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock (Withdrawn 2017). ASTM International, 2008. 12. GB/T 38897-2020. Non-destructive testing – Measurement method for material elastic modulus and Poisson’s ratio using ultrasonic velocity. StateAdministration for Market Regulation, National StandardizationAdministration. China, 2020. 20 p. (In Chinese). 13. State Standard 25095–82. Sintered hardmetals. Method of determination of elastic modulus (of Young’s modulus). Moscow, Standards Publ., 1982. 10 p. (In Russian). 14. GOST R 57862–2017. Composites. Determination of dynamic young’s modulus, shear modulus and Poisson’s ratio by sonic resonance. Moscow, Standartinform Publ., 2017. 15 p. (In Russian). 15. ASTM E2546-15. Standard practice for instrumented indentation testing. ASTM International, 2015. 16. ISO 14577-1:2015. Metallic materials – Instrumented indentation test for hardness and materials parameters – Part 1: Test method. ISO, 2015. 46 p. 17. GOST R 8.748–2011. Metallic materials – Instrumented indentation test for hardness and materials parameters – Part 1: Test method. Moscow, Standartinform Publ., 2011. 28 p. (In Russian). 18. GB/T 21838.1-2019. Metallic materials – Instrumented indentation test for hardness and materials parameters – Part 1: Test method. State Administration for Market Regulation, National Standardization Administration. China, 2019. 40 p. 19. Wu S.-J., Chin P.-C., Liu H. Measurement of elastic properties of brittle materials by ultrasonic and indentation methods. Applied Sciences, 2019, vol. 9 (10), p. 2067. DOI: 10.3390/app9102067. 20. Broitman E. Indentation hardness measurements at macro-, micro-, and nanoscale: A critical overview. Tribology Letters, 2017, vol. 65 (1), art. 23. DOI: 10.1007/s11249-016-0805-5. 21. Zolotorevskii V.S. Mekhanicheskie svoistva metallov [Mechanical properties of metals]. 3rd ed.Moscow, MISIS Publ., 1998. 400 p. 22. Fougere G.E., Riester L., Ferber M., Weertman J.R., Siegel R.W. Young’s modulus of nanocrystalline Fe measuredbynanoindentation. Materials ScienceandEngineering:A, 1995, vol. 204 (1–2), pp. 1–6.DOI: 10.1016/09215093(95)09927-1. 23. Noskova N.I., Mulyukov R.R. Submikrokristallicheskie i nanokristallicheskie metally i splavy [Submicrocrystalline and nanocrystalline metals and alloys]. Ekaterinburg, UrO RAN Publ., 2003. 279 p. 24. Lutfullin R.Ya., Trofimov E.A., Kashaev R.M., Sitdikov V.D., Lutfullin T.R. Young’s modulus of titanium alloy VT6S and its structural sensitivity. Letters on Materials, 2017, vol. 7 (1), pp. 12–16. DOI: 10.22226/24103535-2017-1-12-16. 25. Sumner D.R., Turner T.M., Igloria R., Urban R.M., Galante J.O. Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness. Journal of Biomechanics, 1998, vol. 31 (10), pp. 909–917. DOI: 10.1016/ S0021-9290(98)00096-7.

RkJQdWJsaXNoZXIy MTk0ODM1