Elastic modulus and hardness of Ti alloy obtained by wire-feed electron-beam additive manufacturing

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 25 No. 4 2023 26. Zhang L., Chen L. A review on biomedical titanium alloys: Recent progress and prospect. Advanced Engineering Materials, 2019, vol. 21 (4), p. 1801215. DOI: 10.1002/adem.201801215. 27. Wang X., Gong X., Chou K. Scanning speed effect on mechanical properties of Ti-6Al-4V alloy processed by electron beam additive manufacturing. Procedia Manufacturing, 2015, vol. 1, pp. 287–295. DOI: 10.1016/j. promfg.2015.09.026. 28. Savchenko N.L., Vorontsov A.V., Utyaganova V.R., Eliseev A.A., Rubtsov V.E., Kolubaev E.A. Osobennosti strukturno-fazovogo sostoyaniya splava Ti-6Al-4V pri formirovanii izdelii s ispol’zovaniem elektronno-luchevoi provolochnoi additivnoi tekhnologii [Features of the structural-phase state of the alloy Ti-6Al-4V in the formation of products using wire-feed electron beam additive manufacturing]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2018, vol. 20, no. 4, pp. 60–71. DOI: 10.17212/1994-63092018-20.4-60-71. 29. Osipovich K., Kalashnikov K., Chumaevskii A., Gurianov D., Kalashnikova T., Vorontsov A., Zykova A., Utyaganova V., Panfilov A., Nikolaeva A., Dobrovolskii A., Rubtsov V., Kolubaev E. Wire-feed electron beam additive manufacturing: A review. Metals, 2023, vol. 13 (2), p. 279. DOI: 10.3390/met13020279. 30. Pushilina N.S., Klimenov V.A., Cherepanov R.O., Kashkarov E.B., Fedorov V.V., Syrtanov M.S., Lider A.M., Laptev R.S. Beam current effect on microstructure and properties of electron-beam-melted Ti-6Al-4V alloy. Journal of Materials Engineering and Performance, 2019, vol. 28 (10), pp. 6165–6173. DOI: 10.1007/s11665-019-04344-0. 31. Okulov I.V., Geslin P.-A., Soldatov I.V., Ovri H., Joo S.-H., Kato H. Anomalously low modulus of the interpenetrating-phase composite of Fe and Mg obtained by liquid metal dealloying. Scripta Materialia, 2019, vol. 163, pp. 133–136. DOI: 10.1016/j.scriptamat.2019.01.017. 32. Belosludtsev T.N., Kotolomov A.Yu., Nastich S.Yu., Lopatkin V.A., Shipilov A.V., Kuranov A.Ye., Yaremenko O.B. Opredelenie mekhanicheskikh svoistv metalla kol’tsevykh svarnykh soedinenii i osnovnogo metalla trub metodom instrumental’nogo indentirovaniya [Determining mechanical properties of circular welded joint metal and pipe base metal using the instrumented indentation method]. Gazovaya promyshlennost’ = GAS Industry of Russia, 2021, no. S3 (823), pp. 26–36. (In Russian). 33. Yaremenko O.B., Kuranov A.E., Vasiltsov S.Yu. [Instrumental indentation as a non-destructive method for evaluating the mechanical characteristics of structural materials]. Zhivuchest’ i konstruktsionnoe materialovedenie (ZhivKoM – 2020) [Survivability and Structural MaterialsScience (SSMS-2020)]. Moscow, 2020, pp. 274–278. (In Russian). 34. Klimenov V., Kolubaev E., Klopotov A., Chumaevskii A., Ustinov A., Strelkova I., Rubtsov V., Gurianov D., Han Z., Nikonov S., Batranin A., Khimich M. Influence of the coarse grain structure of a titanium alloy Ti-4Al-3V formed by wire-feed electron beam additive manufacturing on strain inhomogeneities and fracture. Materials, 2023, vol. 16 (11), p. 3901. DOI: 10.3390/ma16113901. 35. ASTM E494-15. Standard practice for measuring ultrasonic velocity in materials. ASTM International, 2015. 36. Lee J.-S., Jang J., Lee B.-W., Choi Y., Lee S.G., Kwon D.An instrumented indentation technique for estimating fracture toughness of ductile materials: A critical indentation energy model based on continuum damage mechanics. Acta Materialia, 2006, vol. 54 (4), pp. 1101–1109. DOI: 10.1016/j.actamat.2005.10.033. 37. Rafi H.K., Karthik N.V., Gong H., Starr T.L., Stucker B.E. Microstructures and mechanical properties of Ti6Al-4V parts fabricated by selective laser melting and electron beam melting. Journal of Materials Engineering and Performance, 2013, vol. 22 (12), pp. 3872–3883. DOI: 10.1007/s11665-013-0658-0. 38. Collins P.C., Brice D.A., Samimi P., Ghamarian I., Fraser H.L. Microstructural control of additively manufactured metallic materials. Annual Review of Materials Research, 2016, vol. 46 (1), pp. 63–91. DOI: 10.1146/ annurev-matsci-070115-031816. 39. Liu S., Shin Y.C. Additive manufacturing of Ti-6Al-4V alloy: A review. Materials & Design, 2019, vol. 164, p. 107552. DOI: 10.1016/j.matdes.2018.107552. 40. Ho W.F., Ju C.P., Chern Lin J.H. Structure and properties of cast binary Ti–Mo alloys. Biomaterials, 1999, vol. 20 (22), pp. 2115–2122. DOI: 10.1016/S0142-9612(99)00114-3. 41. Klimenov V.A., Fedorov V.V., Slobodyan M.S., Pushilina N.S., Strelkova I.L., Klopotov A.A., Batranin A.V. Microstructure and compressive behavior of Ti-6Al-4V alloy built by electron beam free-form fabrication. Journal of Materials Engineering and Performance, 2020, vol. 29 (11), pp. 7710–7721. DOI: 10.1007/s11665-020-05223-9. 42. Zardiackas L.D., Mitchell D.W., Disegi J.A. Characterization of Ti-15Mo beta titanium alloy for orthopaedic implant applications. Medical Applications of Titanium and Its Alloys: The Material and Biological Issues. ASTM, 1996, pp. 60–75. DOI: 10.1520/stp16070s.

RkJQdWJsaXNoZXIy MTk0ODM1